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Optimal capital structure with earnings above a floor ∗

Michi NISHIHARA†, Takashi SHIBATA‡

Abstract

This paper derives the optimal capital structure of a firm whose earnings follow a geometric

Brownian motion with a lower reflecting barrier. The barrier can be interpreted as a market inter-

vention threshold (e.g., a price floor) by the government or an exit threshold of weak competitors

in the market. Unlike in the standard model with no barrier, the firm is able to issue riskless debt

to a certain capacity determined by the barrier. The higher the barrier, the larger the riskless debt

capacity, and the firm prefers riskless capital structure rather than risky capital structure. Notably,

with intermediate barrier levels, the firm can choose riskless capital structure with lower leverage

than the level with no barrier. This mechanism can help explain debt conservatism observed in

practice. The paper also entails several implications of public intervention by examining the lowest

barrier (i.e., the weakest intervention) to achieve riskless capital structure.

JEL Classification Codes: G13; G28; G32.

Keywords: Capital structure; Real options; Regulated market; Price floor; Competitive advan-

tage.

1 Introduction

This paper analyzes an optimal capital structure model of a firm that receives stochastic flows of

earnings above a floor. The floor can be interpreted as the government’s intervention to protect

particular companies or industries (e.g., transportation, utility, agricultural, or financial industries)

against downside risks. Apart from the regulated markets, the floor can be interpreted as an exit

threshold of relatively weak competitors. Then, the model can approximate a firm with a certain

competitive advantage or protection against downside risks. In the model, we reveal that a firm
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can determine capital structure by a mechanism different from standard trade-off theory; indeed,

a firm can optimally choose capital structure with no risky debt.

The baseline model builds on the standard real options models of optimal capital structure

(e.g., Leland (1994), Goldstein, Ju, and Leland (2001), and Shibata and Nishihara (2012)). As

in the standard literature, we assume that a firm has an option to issue consol debt at an initial

time and that shareholders of the firm have an option to default debt in place. The firm’s earnings

are modeled by a geometric Brownian motion (GBM) with a lower reflecting barrier (i.e., a floor),

which is a difference from the standard models. We also extend the baseline model to a model with

a debt financing constraint. In the models with a barrier, we analytically derive the equity, debt,

firm values, leverage, and credit spreads, as well as their sensitivities to barrier levels. The results

are explained below.

A most notable difference from the standard results with no barrier (e.g., Leland (1994), Gold-

stein, Ju, and Leland (2001), and Shibata and Nishihara (2012)) is that a barrier generates a

capacity of riskless debt financing. Naturally, the higher the barrier, the larger the riskless debt

capacity. Compared to risky debt, riskless debt has an advantage of no bankruptcy cost but a

disadvantage of the debt level being limited by the capacity. If the barrier is lower than a critical

level (i.e., the riskless debt capacity is insufficient), then the firm prefers risky capital structure. In

this case, the presence of a barrier hardly affects the equity, debt, firm values, leverage, and credit

spreads because the firm chooses leverage by the standard trade-off between the tax benefits and

bankruptcy costs of debt.

If the barrier is higher than the critical level (i.e., the riskless debt capacity is sufficient), then

the firm prefers riskless capital structure. In the no-default case, the barrier level greatly affects

all the values because the riskless debt capacity (depending on the barrier level) rather than the

standard trade-off is a key determinant of capital structure. Notably, the barrier close to the

critical level leads to lower debt and leverage levels than the optimal levels with no barrier. That

is, in contrast to the straightforward intuition that the firm increases debt with a floor, the firm

voluntarily reduces debt to take advantage of having no bankruptcy risk. This result can help

explain empirical observations of debt conservatism (e.g., Graham (2000), Strebulaev and Yang

(2013), and El Ghoul, Guedhami, Kwok, and Zheng (2018)); some firms have quite low leverage

and bankruptcy risk compared to the optimal levels predicted by standard trade-off theory. Indeed,

our model suggests that firms do not choose risky capital structure based on the standard trade-off

but optimally choose riskless capital structure with low leverage if they have certain degrees of

competitive advantage or protection against downside risks.

We also examine the comparative statics with respect to key parameters. With a given barrier

level, a higher volatility, bankruptcy cost, lower growth rate, corporate tax rate, and stronger debt

issuance constraint tend to lead to the no-default case. The switch to the no-default case can cause

the comparative static results to differ from those of the standard trade-off models. For instance,

in the no-default case, a higher growth rate increases equity value more than riskless debt capacity,

decreasing leverage contrary to the standard result. This mechanism can explain empirical evidence

2



of a negative relation between leverage and profitability, which is well known as an inconsistency

between trade-off theory and practice (e.g., Frank and Goyal (2015) and Demarzo (2019)).

This paper focuses on the lowest barrier to achieve the no-default case, because it can be

interpreted as the weakest intervention by the government that prevents the firm from bankruptcy.

We show that the critical level is lower than the level necessary to save the firm from bankruptcy ex

post. This result emphasizes the importance of the ex ante information disclosure of the intervention

policy. The appropriate commitment by the government leads a firm to adopt riskless capital

structure with low leverage rather than leading the firm to take moral hazard behavior of increasing

debt. A higher volatility and lower growth rate decrease the critical barrier level but increase the

frequency of hitting the barrier. A higher bankruptcy cost, lower corporate tax rate, and stronger

debt issuance constraint decrease advantages of risky debt, decreasing the critical barrier level and

the frequency of hitting the barrier. These results suggest that the government can weaken and

reduce market interventions with a more stringent bankruptcy law (i.e., a higher bankruptcy cost),

lower corporate tax rate, and stronger leverage regulation.

Last, we will briefly explain technically related literature. Dixit and Pindyck (1994) solve the

investment and exit timing models with a price ceiling and floor and entail many implications

of market competition and regulation. By extending the models, Dobbs (2004) shows that the

optimal price ceiling delays investment in a monopoly, whereas Roques and Savva (2009) show

that it accelerates investment in an oligopoly. Evans and Guthrie (2012) study a firm’s production

capacity adjustments under a price ceiling and quantity floor and show that with economies of scale,

the firm invests in smaller, more frequent, increments than the social planner. Adkins, Paxson,

Pereira, and Rodrigues (2019) examine the optimal duration of regulation in the investment timing

model with a finite/retractable price ceiling and floor. Unlike this paper, the above papers assume

all-equity firms and do not examine any capital structure problem.

Sarkar (2016) develops a Leland-type capital structure model with a price ceiling and shows that

the price ceiling significantly increases leverage. He also shows that the price ceiling can counterin-

tuitively decrease consumer welfare. Rodrigues (2022) is closest to this paper. He investigates the

investment timing and capital structure model with a revenue ceiling and floor. His model, which

includes the investment timing and price ceiling, is more generalized than our baseline model, but

due to the model complexity, most of the results are shown numerically. Unlike Rodrigues (2022),

this paper shows the explicit mechanism of how the price floor generates riskless debt capacity and

leads to riskless capital structure in the simple model. In contrast to Sarkar (2016), this paper

shows that leverage can either increase or decrease (i.e., it can be nonmonotonic) with floor levels.

The paper is organized as follows. Section 2 explains the model setup. In Section 3.1, we

explain the solutions in the benchmark model with no barrier, and in Section 3.2, we derive the

explicit solutions in the baseline model with a barrier. We also analytically derive the sensitivities

to barrier levels. In Section 3.3, we derive the explicit solutions in the extended model with a debt

issuance constraint. Section 4 numerically examines the sensitivities to the key parameters, and

Section 5 concludes.
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2 Model setup

The baseline model builds on the standard capital structure model based on trade-off theory (e.g.,

Leland (1994) and Goldstein, Ju, and Leland (2001)). Consider a firm that receives continuous

streams of earnings before interest and taxes (EBIT) X(t) until bankruptcy. EBIT X(t) follows a

GBM

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x

with lower reflecting barrier xB(> 0), where B(t) denotes the standard Brownian motion defined

in a filtered probability space (Ω,F ,P, {Ft}) and growth rate µ, volatility σ(> 0), and initial value

X(0) = x(≥ xB) are constants. For convergence, r > µ is assumed, where a positive constant r

denotes the risk-free interest rate, and X(0) = x is assumed to be sufficiently high level so that the

firm is not bankrupt at time 0.

At time 0, the firm issues consol debt to maximize the firm value, where the tax benefits and

bankruptcy costs of debt will be clarified in the next section. For debt in place, shareholders can

stop coupon payments (i.e., declare default) to maximize the equity value. In the default case,

shareholders receive nothing, and debt holders receive the post-bankruptcy firm value, which is

equal to the unlevered firm value multiplied by (1−α). This means that a fraction α ∈ (0, 1) of the

unlevered firm value is lost to the deadweight costs of bankruptcy. Equity, debt, and firm values

are fairly priced based on the rational expectation of ex post shareholders’ default behavior.

The presence of lower reflecting barrier xB is a difference from the standard capital structure

model.1 Intuitively, lower reflecting barrier xB means that X(t) is pulled back to xB and moves

again from xB immediately after X(t) falls below xB . It is different from the assumption that

X(t) equals a GBM S(t) (i.e., the shadow process) for S(t) ≥ xB but remains at xB for S(t) < xB .

Although the shadow process model requires the value function in regions S(t) < xB and S(t) ≥ xB ,

the reflecting barrier model requires only one region, X(t) ≥ xB .
2 By this technical simplicity, we

can solve the model explicitly in the next section.

The model with barrier xB can approximate the following two situations. First, governments

might try to intervene in markets to protect specific firms or industries (e.g., transportation, utility,

agricultural, or financial industries) against downside risks. For instance, European Union coun-

tries’ governments purchase particular agricultural products to prevent their prices from dropping

to unsustainably low levels. Although such market interventions require direct and indirect costs,

1Reflecting barriers frequently appear in dynamic financing and payout models. For instance, in Bolton, Chen, and

Wang (2011), the state variable moves between a lower reflecting barrier (i.e., the financing threshold) and an upper

reflecting barrier (i.e., the payout threshold), although unlike in our model, the barrier levels are determined endogenously

in their model.
2Most of the literature studies the shadow process models (e.g., Sarkar (2016), Adkins, Paxson, Pereira, and Rodrigues

(2019), and Rodrigues (2022)). An exception is Chapter 8 of Dixit and Pindyck (1994), where the reflecting barrier models

are examined. We do not think that the technical difference matters in terms of economic implications. Indeed, the same

results on floors as in our results are observed in Rodrigues (2022), who studies a more complicated model based on the

shadow process. For instance, a higher floor also leads to riskless capital structure in Rodrigues (2022).
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governments can adopt the market measures if the bankruptcy costs of these firms, including in-

direct costs, such as threats to national security, are higher than the intervention costs. In this

case, xB is interpreted as the intervention threshold.3 Chapter 9 of Dixit and Pindyck (1994),

Adkins, Paxson, Pereira, and Rodrigues (2019), and Rodrigues (2022) also examine real options

models with floors (and ceilings) in terms of public intervention. Sections 3.3 and 4.6 study the

effects of leverage regulation in addition to the public intervention by incorporating a debt issuance

constraint into the baseline model.

Second, the baseline model may capture firms with strong competitive advantage against down-

side risks. For instance, consider oil prices. Relatively weak shale oil producers tend to exit the

markets when oil prices fall to unsustainably low levels for them. After the exit of shale oil pro-

ducers, oil prices are likely to rebound. Thus, the biggest oil companies, which have sufficient

competitive advantage to survive downturns, could receive cash flows above certain levels. More

generally, the cash flow dynamics of resilient firms may have such a trend. In this case, xB is

regarded as the exit threshold of weak competitors. Chapter 8 of Dixit and Pindyck (1994) also

examine entry and exit timing models with lower and upper reflecting barriers in terms of the

competitive market.

3 Model solutions

3.1 EBIT with no barrier

This subsection explains the benchmark model with no barrier (i.e., xB = 0). The following results

are well known in previous literature (e.g., Goldstein, Ju, and Leland (2001), Shibata and Nishihara

(2012), and Sundaresan, Wang, and Yang (2015)), and hence, the details of derivation are omitted.

First, suppose that the firm issues consol debt with coupon C. For given coupon C, the equity,

debt, and firm values are expressed as

E0(x;C) = πx− (1− τ)C

r
+

(
x

x0(C)

)γ (
(1− τ)C

r
− πx0(C)

)
(1)

D0(x;C) =
C

r
−
(

x

x0(C)

)γ (
C

r
− (1− α)πx0(C)

)
(2)

F0(x;C) = πx+
τC

r
−
(

x

x0(C)

)γ (
απx0(C) +

τC

r

)
(3)

for x ≥ x0(C), where τ denotes a corporate tax rate, π = (1−τ)/(r−µ) denotes the unlevered firm’s

coefficient, γ = 0.5 − µ/σ2 −
√

(µ/σ2 − 0.5)
2
+ 2r/σ2 denotes a negative characteristic root, and

x0(C) denotes the default threshold. Throughout the paper, subscript 0 stands for the benchmark

model with no barrier. The first, second, and last terms in equity value (1) correspond to the

unlevered firm value, perpetual coupon payments, and the value of the default option, respectively.

The first and second terms in debt value (2) are the perpetual coupon receipts (i.e., the riskless

3When the product price follows a GBM with a floor, EBIT also follows a GBM with a floor in the standard setups

(e.g., Dixit and Pindyck (1994)). Then, for simplicity, this paper directly assumes EBIT with a floor.
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debt value) and loss due to default risk, respectively. The first, second, and last terms in firm value

(3) are the unlevered firm value, perpetual tax benefits of debt, and bankruptcy costs, respectively.

Note that shareholders determine x0(C) to maximize its own value E0(x;C) for debt in place.

By solving argmaxx0(C)≥0E0(x;C), we obtain default threshold

x0(C) = C/δ, (4)

where δ is a constant given by

δ =
(γ − 1)r

γ(r − µ)
(> 1).

Now, consider the optimal capital structure. The firm chooses coupon C to maximize firm value

F0(x;C) based on the trade-off between the tax benefits and bankruptcy costs of debt. By solving

argmaxC≥0 F0(x;C), we obtain optimal coupon

C0(x) = δx/h, (5)

where h is a constant given by

h =
[
1− γ

(
1− α+

α

τ

)]− 1
γ

(> 1).

The optimally levered firm value is

F0(x;C0(x)) = ψπx, (6)

where ψ is a constant given by

ψ = 1 +
τ

(1− τ)h
(> 1)

and is interpreted as the leverage effect. Indeed, the levered firm value F0(x;C0(x)) is the unleverd

firm value πx multiplied by ψ(> 1). The firm’s leverage is

LV0(x) =
D0(x;C0(x))

F0(x;C0(x))
=
γ − 1

γ

(1− τ)(1− ξ)

hψ
, (7)

and credit spreads are

CS0(x) =
C0(x)

D0(x;C0(x))
− r =

rξ

1− ξ
, (8)

where ξ is a constant defined by

ξ =

(
1− (1− α)(1− τ)

γ

γ − 1

)
hγ (∈ (0, 1)).

3.2 EBIT with a lower reflecting barrier

This subsection solves the baseline model with lower reflecting barrier xB > 0. First, suppose that

the firm issues debt with coupon C. For given C, shareholders choose whether they default. Then,

equity value E(x;C) is expressed as

E(x;C) = max{Ed(x;C), En(x;C)}, (9)
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where Ed(x;C) and En(x;C) represent the equity values in the default-possible and no-default

cases, which will be defined later. The next proposition shows the equity, debt, and firm values,

denoted by E(x;C), D(x;C), and F (x;C), respectively, for given coupon C. For the proof, see

Appendix A.

Proposition 1 For C > δxB, the firm goes bankrupt at default threshold x0(C) = C/δ (i.e., the

default-possible case). The equity, debt, and firm values are given by

E(x;C) = Ed(x;C) = E0(x;C), (10)

D(x;C) = Dd(x;C) =
C

r
−
(

x

x0(C)

)γ (
C

r
− (1− α)πx0(C)

)
︸ ︷︷ ︸

=D0(x;C)

−
(
x

xB

)γ
(1− α)πxB

γ
, (11)

F (x;C) = Fd(x;C) = πx+
τC

r
−
(

x

x0(C)

)γ (
απx0(C) +

τC

r

)
︸ ︷︷ ︸

=F0(x;C)

−
(
x

xB

)γ
(1− α)πxB

γ
. (12)

Otherwise, the firm never goes bankrupt (i.e., the no-default case). The equity, debt, and firm

values are given by

E(x;C) = En(x;C) = πx− (1− τ)C

r
−
(
x

xB

)γ
πxB
γ

, (13)

D(x;C) = Dn(x;C) =
C

r
, (14)

F (x;C) = Fn(x;C) = πx+
τC

r
−
(
x

xB

)γ
πxB
γ

. (15)

Note that C > δxB is equivalent to x0(C) > xB . First, we explain the default-possible case,

in which x0(C) is higher than xB . Equity value Ed(x;C) does not depend on xB because X(t)

does not hit xB before bankruptcy. Then, Ed(x;C) is the same as the benchmark value E0(x;C)

(see (10)). However, debt and firm values, Dd(x;C) and Fd(x;C), respectively, benefit by xB . The

first and second terms in (11) coincide with D0(x;C), and the last term is the additional value

by xB (note that γ < 0). The additional value arises from the fact that X(t) can hit xB after

default. That is, the post-default value, which debt holders obtain, increases with higher xB .
4

Firm value Fd(x;C) has the same benefit from xB (see the last terms in (11) and (12)) because of

Fd(x;C) = E0(x;C) +Dd(x;C).

Now, we explain the no-default case. By C ≤ δxB , En(xB ;C) ≥ 0 holds in (13). Then, for

any X(t) ≥ xB , shareholders are better off continuing operation with coupon payments rather than

declaring default. Shareholders benefit by xB because X(t) can hit xB . The first, second, and third

terms in (13) represent the unlevered firm value, perpetual coupon payments, and additional value

by xB (note that γ < 0). Debt holders also benefit by xB because xB removes the default risk.

4As in Leland (1994) and Goldstein, Ju, and Leland (2001), our model does not specify either liquidation or reorgani-

zation bankruptcy but assumes that the post-default firm value is the unlevered value discounted by bankruptcy costs.

The unlevered value increases in xB .
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Then, Dn(x;C) agrees with the riskless debt value in (14). In (15), firm value Fn(x;C) consists

of the unlevered firm value, perpetual tax benefits, and additional value by xB . Unlike F0(x;C),

Fn(x;C) does not include any term representing bankruptcy costs.

Proposition 1 implies that Dn(x; δxB) = δxB/r is the capacity of riskless debt. Of course,

for C ≤ xB , the firm always receives nonnegative cash flows X(t) − C, and hence, shareholders

continue operation perpetually. Note that δ > 1. Considering the possibility that X(t) goes

beyond xB due to volatility σ, shareholders prefer to operate perpetually for C ≤ δxB . Indeed,

the expected cash flows of perpetual operation are nonnegative (i.e., En(x;C) ≥ 0) for C ≤ δxB .

This is how the presence of barrier xB creates the riskless debt capacity δxB/r. Proposition 1 nests

the benchmark case with no barrier as the limiting case of xB → 0. Indeed, limxB→0E(x;C) =

E0(x;C), limxB→0D(x;C) = D0(x;C), and limxB→0 F (x;C) = F0(x;C) hold.

Next, consider the optimal capital structure. We need to solve maxC≥0 F (x;C). By (5) and

(12), we have argmaxC≥0 Fd(x;C) = argmaxC≥0 F0(x;C) = C0(x), which reflects the standard

trade-off between the tax benefits and bankruptcy costs of debt. By (15), Fn(x;C) increases

linearly in C, implying argmaxC∈[0,δxB ] Fn(x;C) = δxB . This reflects the fact that a higher debt

level increases firm value via greater tax benefits in the no-default case. Comparing (12) and

(15), we have Fd(x;C) < Fn(x;C) for any (x,C) because Fd(x;C), unlike Fn(x;C), includes the

term of bankruptcy costs. Therefore, maxC≥0 F (x;C) = max{Fd(x;C0(x)), Fn(x; δxB)} holds. For

graphical images of F (x;C), see Figure 1. Define the difference as

G(x;xB) = Fn(x; δxB)− Fd(x;C0(x))

=
(γ − 1)τxB
γ(r − µ)

− τx

(r − µ)h
−
(
x

xB

)γ
απxB
γ

, (16)

where we used (6), (12), and (15) to obtain (16). The next proposition shows the equity, debt,

firm values, coupon, leverage, and credit spreads, denoted by E(x), D(x), F (x), C(x), LV (x), and

CS(x) respectively, under optimal capital structure. For the proof, see Appendix B.

Proposition 2 There exists a unique solution x∗B ∈ (0, γx/(γ−1)h) to G(x;x∗B) = 0, and xB < x∗B

is equivalent to G(x;xB) < 0.

For xB < x∗B, the firm issues risky debt with coupon C0(x) and goes bankrupt at default thresh-

old x0(C0(x)) = x/h (i.e., the default-possible case). The equity, debt, firm values, coupon,

leverage, and credit spreads are given by E(x) = E0(x;C0(x)), D(x) = Dd(x;C0(x)), F (x) =

Fd(x;C0(x)), C(x) = C0(x), LV (x) = Dd(x;C0(x))/Fd(x;C0(x)), and CS(x) = C0(x)/Dd(x;C0(x))−

r, respectively.

Otherwise, the firm issues riskless debt with coupon δxB and never goes bankrupt (i.e., the

no-default case). The equity, debt, firm values, coupon, leverage, and credit spreads are given by

E(x) = En(x; δxB), D(x) = δxB/r, F (x) = Fn(x; δxB), C(x) = δxB , LV (x) = δxB/rFn(x; δxB),

and CS(x) = 0, respectively.

First, we explain the default-possible case (i.e., xB < x∗B). The firm prefers to issue risky debt

due to the insufficient riskless debt capacity. In this case, the optimal coupon and default timing
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are the same as those of the benchmark model with no barrier. The other values are obtained by

substituting coupon C0(x) into the default-possible case of Proposition 1. Note that C0(x) > δxB

holds by Fn(x; δxB) < Fd(x;C0(x)) < Fn(x;C0(x)).

Next, we focus on the no-default case (i.e., xB ≥ x∗B). The firm is better off issuing riskless

debt δxB/r because of the sufficient riskless debt capacity. Notably, δxB is not necessarily higher

than C0(x). Both δxB < C0(x) and Fn(x; δxB) ≥ Fd(x;C0(x)) can be satisfied because Fn(x; δxB),

unlike Fd(x;C0(x)), includes no term of bankruptcy costs (e.g., see the top panel of Figure 1). In

other words, the firm chooses riskless capital structure if the gain from having no bankruptcy risk

dominates the inefficiency from the upper limit of riskless debt.

In Proposition 2, x∗B stands for the lowest barrier to achieve the no-default case.5 The critical

level x∗B is lower than the benchmark default threshold x0(C0(x)) = x/h by x∗B < γx/(γ − 1)h <

x/h. This result has the following implication for public intervention. Suppose that the government

attempts to prevent the firm from bankruptcy. Without the government’s ex ante commitment of

an intervention threshold, the firm issues debt with coupon C0(x) (as in the benchmark case with

no barrier). In this case, by Proposition 1 with C = C0(x), the government needs intervention

threshold xB = C0(x)/δ = x/h to prevent the firm from bankruptcy. However, the ex ante

commitment of intervention threshold x∗B(< x/h) prevents the firm from bankruptcy. This is

because by considering intervention threshold x∗B , the firm strategically reduces debt (i.e., δx∗B <

C0(x)) and chooses riskless capital structure. That is, the government’s credible commitment does

not cause the firm’s moral hazard (i.e., increasing debt) but instead improves the efficiency of the

public intervention policy. As we will check numerically in Section 4, the ex ante required level x∗B

is much lower than the ex post required level x/h, which highlights the importance of the credible

commitment of the public intervention policy.

We can analytically prove the comparative statics with respect to barrier xB because Proposition

2 derives all the values explicitly. For the proof, see Appendix C.

Proposition 3 For xB < x∗B (i.e., the default-possible case), D(x), F (x), and LV (x) increase in

xB, CS(x) decreases in xB, and C(x) = C0(x), x0(C0(x)) = x/h, and E(x) = E0(x;C0(x)) are

constant.

At xB = x∗B (i.e., the switching point), E(x) jumps upward, D(x), C(x), LV (x), and CS(x)

jump downward, and F (x) is continuous.

For xB ≥ x∗B (i.e., the no-default case), D(x), F (x), C(x) = δxB, and LV (x) increase in xB,

E(x) decreases in xB, and CS(x) is 0.

Note that the values approach the benchmark values with no barrier for xB → 0. At xB = x∗B ,

the values, except firm value F (x), jump because the firm switches coupon C(x) from C0(x) (i.e.,

the default-possible case) to δx∗B (i.e., the no-default case). The switch results from maximization

5By (16), x∗
B depends on initial EBIT X(0) = x. Define yB = xB/x and G(x;xB) = xg(yB). Then, there is a unique

solution y∗
B ∈ (0, γ/(γ − 1)h) to g(y∗

B) = 0, and y∗
B is the threshold between the default-possible and no-default cases.

In other words, the standardized barrier level xB/x matters to the firm.
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of F (x), and hence, the switch does not cause a jump in F (x). Interestingly, E(x), D(x), C(x),

and LV (x) are nonmonotonic with respect to xB because of the switch. Section 4.1 will show the

quantitative effects of xB on the results in numerical examples.

The no-default case with xB close to x∗B is most notable. In this region, D(x) and LV (x) are

lower than D0(x) and LV0(x) due to δx∗B < C0(x). As explained previously, this result implies

that by the credible commitment of the market intervention threshold, the government can de-

crease the firm’s debt and remove its bankruptcy risk. Furthermore, this result can help explain

debt conservatism. It is well known as debt conservatism that some firms have quite low leverage

and bankruptcy risk compared to the optimal level predicted by trade-off theory (e.g., Graham

(2000), Strebulaev and Yang (2013), and El Ghoul, Guedhami, Kwok, and Zheng (2018)). Debt

conservatism is often explained by theories of dynamic (and infrequent) leverage adjustment and

financial slack for future investments and downside risks, but our model adds an alternative mech-

anism. Indeed, a firm can optimally choose riskless capital structure with low leverage if it has a

certain degree of competitive advantage or protection against downside risks.

Following the standard models (e.g., Leland (1994) and Goldstein, Ju, and Leland (2001)), our

model assumes the post-bankruptcy value as the discounted value of the unlevered value. However,

some papers, including Mella-Barral and Perraudin (1997), Lambrecht and Myers (2008), and

Shibata and Nishihara (2018), assume a constant component of the post-bankruptcy value (e.g.,

constant scrap value). The presence of constant liquidation value generates the possibility of riskless

debt financing, but its mechanism is different from that of this paper. In these models, shareholders

can retire the principal of debt by a part of the constant liquidation value and obtain the residual

value. In such a situation, the firm exits the market, but debt becomes riskless. In contrast, in our

model, protection against downside risks can lead the firm to operate perpetually in the market,

which makes debt riskless.

3.3 Debt issuance constraint

This subsection interprets xB as the public intervention threshold. In such regulated markets (e.g.,

transportation, utility, agricultural, and financial industries), the government might not only save

firms from financial distress but also regulate excessive uses of debt to remove bankruptcy risk.

To explore the effects of such a leverage regulation on the outcome, this subsection extends the

baseline model to a model with an upper limit of debt issuance. The extended model assumes that

coupon C must satisfy C ≤ C̄ for a given upper limit C̄(> 0). This is interpreted as a constraint

on the book value of debt (i.e., C/r ≤ C̄/r). However, as we will see in Section 4.5, D(x) and

LV (x) monotonically increases in C̄. Hence, the results will remain unchanged even if we assume

a constraint on the market value of debt or leverage. Assume that C̄ < C0(x) because the firm is

unconstrained for C̄ ≥ C0(x).

For C̄ ≤ δxB , the firm optimally chooses the maximum coupon C̄ and obtain firm value Fn(x; C̄)

because there is no possibility of bankruptcy (see Proposition 1). For C̄ ∈ (δxB , C0(x)), the firm

solves max{Fd(x; C̄), Fn(x; δxB)} because Fd(x;C) increases in C ≤ C0(x). As in the previous

10



subsection, define the difference as

Ḡ(x;xB) = Fn(x; δxB)− Fd(x; C̄)

=
τ(δxB − C̄)

r
−
(
x

xB

)γ
απxB
γ

+

(
x

x0(C̄)

)γ (
απx0(C̄) +

τC̄

r

)
, (17)

where we used (12) and (15) to obtain (17). The next proposition shows the equity, debt, firm

values, coupon, leverage, and credit spreads, denoted by Ē(x), D̄(x), F̄ (x), C̄(x), L̄V (x), and C̄S(x),

respectively, under the debt issuance constraint. For the proof, see Appendix D.

Proposition 4 There exists a unique solution x̄B ∈ (0,min{x∗B , C̄/δ}) to Ḡ(x; x̄B) = 0. The

solution x̄B increases in C̄.

For xB < x̄B, the firm issues risky debt with coupon C̄ and goes bankrupt at default threshold

x0(C̄) (i.e., the default-possible case). The equity, debt, firm values, coupon, leverage, and credit

spreads are given by Ē(x) = E0(x; C̄), D̄(x) = Dd(x; C̄), F̄ (x) = Fd(x; C̄), C̄(x) = C̄, L̄V (x) =

Dd(x; C̄)/Fd(x; C̄), and C̄S(x) = C̄/Dd(x; C̄)− r, respectively.

For xB ∈ [x̄B , C̄/δ], the firm riskless debt with coupon δxB and never goes bankrupt (i.e., the

no-default case). The equity, debt, firm values, coupon, leverage, and credit spreads are given by

Ē(x) = En(x; δxB), D̄(x) = δxB/r, F̄ (x) = Fn(x; δxB), C̄(x) = δxB , L̄V (x) = δxB/rFn(x; δxB),

and C̄S(x) = 0, respectively.

For xB > C̄/δ, the firm riskless debt with coupon C̄ and never goes bankrupt (i.e., the no-

default case). The equity, debt, firm values, coupon, leverage, and credit spreads are given by

Ē(x) = En(x; C̄), D̄(x) = C̄/r, F̄ (x) = Fn(x; C̄), C̄(x) = C̄, L̄V (x) = C̄/rFn(x; C̄), and C̄S(x) =

0, respectively.

Proposition 4 can be interpreted in the same way as Proposition 2. Indeed, x̄B represents the

lowest barrier to achieve the no-default case. For xB < x̄B (i.e., the default-possible case), riskless

debt capacity δxB/r is not sufficient, and hence, the firm issues risky debt with the maximum

coupon C̄. For xB ∈ [x̄B , C̄/δ] (i.e., the no-default case), riskless debt capacity δxB/r is large

enough to lead the firm to choose riskless debt. For xB > C̄/δ (i.e., the no-default case), debt with

any C ≤ C̄ becomes riskless, and hence, the firm issues riskless debt with the maximum coupon

C̄.6 Proposition 4 nests Proposition 2 as the limiting case of C̄ → C0(x) because Ḡ(x;xB) and x̄B

agree with G(x;xB) and x
∗
B in the limiting case.

Proposition 4 shows that lower C̄ decreases x̄B and firm value Fn(x; δxB). That is, with a

stronger leverage regulation, the government can weaken market intervention, but the firm value

lowers. In reality, the government’s regulation and intervention require direct and indirect costs,

causing spillover effects on other firms and industries. The combination of strong regulation (i.e.,

low C̄) and weak intervention (i.e, low x̄B) will decrease the intervention cost but increase the

regulation cost. The government chooses one from the set {(C̄, x̄B) | 0 ≤ C̄ ≤ C0(x)} so that it

6Although the debt issuance constraint is imposed even for riskless debt in this paper, it may be imposed only for

risky debt to reduce default risk (see Nishihara, Shibata, and Zhang (2023)). In that setup, the firm issues riskless debt

δxB/r for any xB ≥ x̄B , and it does not matter whether x̄B is higher than C̄/r.
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can minimize the total costs based on the trade-off. It is beyond the scope of this paper to model

the total social costs and derive the optimal choice. Note that x̄B is lower than x0(C̄) = C̄/δ. As

in Proposition Proposition 2, this implies that by the ex ante commitment, the government can

improve the efficiency of the market intervention policy.

Although this paper interprets C̄ as a leverage regulation, it can be be interpreted as a fi-

nancing constraint imposed by debt holders. In this context, some papers investigate the effects

of a borrowing constraint on the investment and financing timing problems with no barrier (e.g.,

Shibata and Nishihara (2012), Shibata and Nishihara (2015), and Shibata and Nishihara (2018)).

In particular, Shibata and Nishihara (2018) and Nishihara, Shibata, and Zhang (2023) show that

under very hard borrowing constraints, the firm tends to issue riskless debt in the models with

constant liquidation value.7 The previous results align with our result that lower C̄ decreases x̄B .

As in Proposition 3, we can analytically prove the comparative statics with respect to barrier

xB . For the proof, see Appendix E.

Proposition 5 For xB < x̄B (i.e., the default-possible case), D̄(x), F̄ (x), and L̄V (x) increase in

xB, C̄S(x) decreases in xB, and C̄(x) = C̄, x0(C̄) = C̄/δ, and Ē(x) = E0(x; C̄) are constant.

At xB = x̄B (i.e., the switching point), Ē(x) jumps upward, D̄(x), C̄(x), L̄V (x), and C̄S(x)

jump downward, and F̄ (x) is continuous.

For xB ∈ [x̄B , C̄/δ] (i.e., the no-default case), D̄(x), F̄ (x), C̄(x), and L̄V (x) increase in xB,

Ē(x) decreases in xB, and C̄S(x) is 0.

For xB > C̄/δ (i.e., the no-default case), Ē(x) and F̄ (x) increase in xB, L̄V (x) decrease in

xB, and D̄(x) = C̄/r, C̄(x) = C̄, C̄S(x) = 0 are constant.

Proposition 5 shows that the comparative statics with respect to barrier xB are mostly un-

changed from Proposition 3, even if the model includes the debt issuance constraint. At xB = x̄B ,

the values, except firm value F (x), jump because coupon C̄(x) jumps from C̄ (i.e., the default-

possible case) to δx∗B (i.e., the no-default case). All the values are continuous at xB = C̄/δ because

C̄(x) is continuous. Due to the switching point xB = x̄B , Ē(x), D̄(x), C̄(x), and L̄V (x) become

nonmonotonic with respect to xB .

4 Numerical analysis and implications

4.1 Baseline results

This section conducts numerical analyses, including comparative statics with respect to barrier xB ,

volatility σ, growth rate µ, bankruptcy cost α, and upper limit C̄. The baseline parameter values

are set as in Table 1, where the values of r, µ, σ, τ , and α are standard in dynamic corporate finance

7In these previous models, a firm optimally chooses risky debt financing in the first-best case with no financing

constraint. This differs from this paper’s result (cf. Proposition 2). Regarding this issue, Shibata and Nishihara (2023)

show that with a high degree of information asymmetry between managers and shareholders. the firm can use riskless

debt financing.
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literature and reflect a typical S&P firm (e.g., Morellec (2001), Arnold (2014), and Nishihara,

Shibata, and Zhang (2023)). The initial EBIT value is normalized as x = X(0) = 1. For these

parameter values, the lowest barrier to achieve the no-default case becomes x∗B = 0.153, which

amounts to 15.3% of the initial EBIT. In the baseline case, we set xB = 0.2 (i.e., the no-default

case), which is close to x∗B = 0.153, so that the outcome will switch between the no-default and

default-possible cases with varying levels of other parameters (cf. Sections 4.3, 4.4, and 4.5).

Sections 4.1–4.5 focus on the baseline model, and Section 4.6 examines the model with a debt

issuance constraint.

Figure 1 depicts firm value F (x;C) for varying levels of C and xB . As shown by (15) in

Proposition 1, F (x;C) increases linearly in C up to C = δxB = 0.435, 0.333, and 0.217 in the

top, center, and bottom panels, respectively. In each panel, F (x;C) jumps downward after point

x = δxB because Fn(x; δxB) > Fd(x; δxB) holds in (12) and (15). All the results are shown by

line graphs in Section 4, and lines that look vertical stand for jumps. For the baseline parameter

values, we have C0(x) = 0.623. For C > δxB , F (x;C) = Fd(x;C) takes its maximum value

at C = C0(x) = 0.623, whereas for C ≤ δxB , F (x;C) = Fn(x;C) takes its maximum value at

C = δxB = 0.435, 0.333, and 0.217 in the panels. In the center panel (i.e., xB = x∗B = 0.153),

Fn(x; δxB) agrees with Fd(x;C0(x)), and hence, the firm is indifferent to the choice between coupon

δxB = 0.333 or C0(x) = 0.623. In the baseline case (i.e., xB = 0.2; see the top panel), Fn(x; δxB) is

higher than Fd(x;C0(x)), and the firm chooses C(x) = δxB = 0.435 (i.e., riskless capital structure).

In the bottom panel (i.e., xB = 0.1), Fn(x; δxB) is lower than Fd(x;C0(x)), and the firm chooses

C(x) = C0(x) = 0.623 (i.e., risky capital structure).

Tables 2 and 3 show the baseline results (i.e., xB = 0.2) and benchmark results with no barrier,

respectively. As mentioned above, in the baseline model, the firm prefers riskless capital structure

(i.e., the no-default case). The firm issues debt up to the riskless debt capacity (i.e., D(x) =

δxB/r = 8.7) to obtain the maximum tax benefits. Leverage becomes LV (x) = 0.38, but credit

spreads are CS(x) = 0 because of riskless debt. In the benchmark model with no barrier, the firm

chooses coupon C0(x) = 0.623 based on the trade-off between the tax benefits and bankruptcy costs

of debt. The firm will go bankrupt when X(t) falls to x0(C0(x)) = 0.287. Hence, D0(x) = 10.84

is discounted from C0(x)/r = 12.46 due to default risk, and credit spreads are positive (i.e.,

CS0(x) = 0.00751).

In Tables 2 and 3, it holds that C(x) < C0(x), E(x) > E0(x), D(x) < D0(x), F (x) > F0(x), LV (x) <

LV0(x), and CS(x) < CS0(x). It is straightforward that F (x) > F0(x) and CS(x) < CS0(x), and

E(x) > E0(x) readily follows from C(x) < C0(x). Inequalities C(x) < C0(x), D(x) < D0(x),

and LV (x) < LV0(x) are notable. As discussed after Proposition 3, these inequalities imply that

barrier xB = 0.2 leads the firm to strategically reduce debt to take advantage of riskless capi-

tal structure rather than to increase debt. In particular, LV (x) = 0.3798 is much lower than

LV0(x) = 0.4854. As explained after Proposition 3, the model can help explain firms with low

leverage and no bankruptcy risk observed in the real world.
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4.2 Effects of barrier xB

Figure 2 depicts C(x), x0(C(x)), E(x), D(x), F (x), LV (x), and CS(x) for varying levels of barrier

xB .
8 The other parameter values are set as in Table 1. Region xB < x∗B = 0.153 is the default-

possible case, whereas region xB ≥ x∗B = 0.153 is the no-default case. Default threshold x0(C(x))

is depicted only in the default-possible case. For comparison, Figure 2 also depicts the benchmark

results with no barrier by dashed lines. The benchmark results do not depend on xB .

Although Proposition 3 has already shown the comparative static results analytically, Figure

2 shows them more closely and quantitatively. For instance, we find that the effects of xB on

D(x), F (x), LV (x), and CS(x) are very weak in the default-possible region (i.e., xB < x∗B = 0.153).

This is because C(x) = C0(x) and E(x) = E0(x) do not depend on xB and the third term in

(11) is very small. Thus, barrier xB does not largely change D(x), F (x), LV (x), and CS(x) from

the benchmark values D0(x), F0(x), LV0(x), and CS0(x). However, in the no-default region (i.e.,

xB ≥ x∗B = 0.153), the effects of xB on E(x), D(x), F (x), and LV (x) are strong because C(x) = δxB

increases linearly in xB . As discussed after Proposition 3, C(x), D(x), and LV (x) are lower than

C0(x), D0(x), and LV0(x) for xB close to x∗B = 0.153, whereas C(x), D(x), and LV (x) are higher

than C0(x), D0(x), and LV0(x) for xB > 0.3.

These results entail several implications. First, we interpret xB as the degree of competitive

advantage. Then, the model shows that leverage can be nonmonotonic with respect to the degree

of competitive advantage. Indeed, firms with intermediate levels of competitive advantage can take

low leverage with only riskless debt.

Next, we interpret xB as the strength of public intervention. The critical intervention threshold

x∗B = 0.153 (i.e., 15.3% of the initial EBIT) is not very high. In absence of the ex ante com-

mitment of the intervention threshold, as explained after Proposition 2, the government would

need intervention threshold xB = x0(C0(x)) = 0.287 to prevent the firm from bankruptcy ex post.

With a credible commitment, the government can prevent the firm from bankruptcy by almost

a half intervention threshold (i.e., x∗B = 0.153). Of course, in the real world including uncer-

tainty and diversity of firm parameter values, it may be difficult for the government to match

xB = x∗B perfectly. A low market intervention threshold (i.e., xB < x∗B = 0.153) hardly influ-

ences capital structure, bankruptcy probability, and firm value, whereas a high market intervention

threshold (say, xB > 0.3) prevents bankruptcy but leads to the firm’s moral hazard (i.e., increasing

leverage to gain tax benefits). It is important to set an appropriate intervention threshold (i.e.,

xB ≈ x∗B = 0.153) to prevent bankruptcy and reduce leverage effectively.

8Rodrigues (2022) also studies the comparative statics with respect to floor levels in numerical examples. Although

his model is more complicated than our model, the effects of floor levels on capital structure are qualitatively unchanged

from our results. Indeed, Rodrigues (2022) also shows that a higher floor leads to riskless capital structure.
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4.3 Effects of volatility σ

Figure 3 depicts C(x), x0(C(x)), E(x), D(x), F (x), LV (x), CS(x), x∗B , and (x/x∗B)
γ for varying lev-

els of volatility σ.9 The other parameter values are set as in Table 1. Region σ < 0.17 is the

default-possible case, whereas region σ ≥ 0.17 is the no-default case. Default threshold x0(C(x))

is depicted only in the default-possible case. For comparison, Figure 3 also depicts the benchmark

results with no barrier by dashed lines.

In the default-possible region (i.e., σ < 0.17), each value moves in the same way as in the

benchmark case with no barrier. In fact, higher σ decreases C(x), x0(C(x)), D(x), F (x), and LV (x)

and increases E(x). These results can be intuitively interpreted as follows. Higher σ increases

bankruptcy risk, and the firm reduces leverage to mitigate bankruptcy risk. However, decreased

leverage does not fully offset increased bankruptcy risk with higher σ, and hence, credit spreads

increase in σ. Firm value decreases in σ due to the lower leverage effect, although equity value

increases due to decreased coupon payments. These results align with the standard results in

previous literature (e.g., Leland (1994)). As in Figure 2, Figure 3 also shows that the presence of

xB hardly affects the values in the default-possible region.

At σ = 0.17, the result switches from the default-possible case to the no-default case. Then,

C(x), E(x), D(x), LV (x), and CS(x) jump at this point. In the no-default region (i.e., σ ≥ 0.17),

C(x), E(x), D(x), F (x), and LV (x) move contrary to the benchmark case with no barrier. The

comparative statics are explained by the sensitivity of riskless debt capacity δxB/r to σ. Note that

δxB/r increases in σ by ∂δ/∂σ > 0. Then, C(x) = δxB , D(x) = δxB/r, F (x), and LV (x) increase

in σ, whereas E(x) decreases in σ due to increased C(x). The results imply that the effects of

volatility on firm value and capital structure for firms with sufficient competitive advantage or

protection against downside risks can greatly differ from those for ordinary firms.

Note that the above results are based on the assumption of constant barrier level xB = 0.2.

Barrier xB = 0.2 is more effective with higher σ because the probability of X(t) hitting xB = 0.2

increases with higher σ. The bottom-right panel of Figure 3 shows that the critical level x∗B and the

state price (x/x∗B)
γ10 decrease and increase, respectively, in σ. The comparative statics of x∗B are

explained by the decrease in Fd(x) and increase in Fn(x) with higher σ (see F (x) of Figure 3). By

these two effects, x∗B , which is the unique solution to (16), decreases in σ. Despite the decrease in

σ, (x/x∗B)
γ increases in σ due to ∂γ/∂σ > 0. In other words, higher σ makes X(t) more volatile and

increases the probability of X(t) hitting x∗B . In terms of public intervention, these results suggest

that the government needs a lower market intervention threshold but more frequent interventions

to prevent a more volatile firm from bankruptcy.

9Rodrigues (2022) also studies the comparative statics with respect to volatility in numerical examples. The effects of

volatility on capital structure in his shadow process model are qualitatively the same as in our reflecting barrier model.
10The state price denotes the present values of $1 contingent on X(t) hitting x∗

B .
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4.4 Effects of growth rate µ

Figure 4 depicts C(x), x0(C(x)), E(x), D(x), F (x), LV (x), CS(x), x∗B , and (x/x∗B)
γ for varying lev-

els of growth rate µ.11 The other parameter values are set as in Table 1. Region µ ≤ 0.0252 is the

no-default case, whereas region µ > 0.0252 is the default-possible case. Default threshold x0(C(x))

is depicted only in the default-possible case. For comparison, Figure 4 also depicts the benchmark

results with no barrier by dashed lines.

As in Figures 2 and 3, Figure 4 shows that all the values in the baseline case are almost the

same as those in the benchmark case in the default-possible region (i.e., µ > 0.0252). One reason

is that the firm choose the same coupon C(x) = C0(x), and the other reason is that the state price

contingent on X(t) hitting xB (i.e., (x/xB)
γ) is very low. We omit explaining the details of the

comparative statics in the default-possible case because they are the same as those in the standard

model with no barrier (e.g., Leland (1994)).

At the switching point µ = 0.0252, C(x), E(x), D(x), LV (x), and CS(x) jump. Even in the

no-default region (i.e., µ ≤ 0.0252), C(x), E(x), D(x), and F (x) change with µ in the same way

as in the benchmark values. More notably, LV (x) decreases in µ, contrary to LV0(x). The reason

is as follows. Riskless debt capacity D(x) = δxB/r increases in µ by ∂δ/∂µ > 0, and equity

value E(x) = E(x; δxB) also increases in µ by ∂π/∂µ > 0 in (13). The latter effect dominates

the former effect, and hence LV (x) decreases in µ. This sensitivity is novel and contrasted with

the standard result. In fact, the standard trade-off models (e.g., Leland (1994)) predict a positive

relation between leverage and growth rate (see LV0(x) in Figure 4), but empirical studies (e.g.,

Titman and Wessels (1988) and Frank and Goyal (2015)) show a negative relation. This is well

known as a deficit of the standard trade-off models (e.g., Demarzo (2019)). Our model may help

resolve the problem. Indeed, the model predicts a negative relation between leverage and cash

flows for firms with sufficient competitive advantage or protection against downside risks.12 This is

because such a firm can set debt level by riskless debt capacity rather than the trade-off between

the tax benefits and bankruptcy costs.

The bottom-right panel of Figure 4 shows that x∗B and (x/x∗B)
γ increase and decrease, respec-

tively, in µ. The former result is caused by Fd(x) increasing in µ more than Fn(x) does. Despite

the increase in σ, (x/x∗B)
γ decreases in µ due to ∂γ/∂µ < 0 (i.e., higher µ decreases the probability

of X(t) hitting x∗B). These results entail a policy implication that the government needs a higher

market intervention threshold but less frequent market interventions to prevent a high-growth firm

from bankruptcy.

11Rodrigues (2022) also studies the comparative statics with respect to growth rate in numerical examples. The effects

of growth rate on capital structure in his shadow process model are qualitatively the same as in our reflecting barrier

model.
12The relation between X(0) = x and LV (x) is also negative in the no-default region because as explained in footnote

5, the sensitivities to x is inverse to the sensitivities to xB (see Figure 2).
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4.5 Effects of bankruptcy cost α

Figure 5 depicts C(x), x0(C(x)), E(x), D(x), F (x), LV (x), CS(x), x∗B , and (x/x∗B)
γ for varying lev-

els of bankruptcy cost α. The other parameter values are set as in Table 1. Region α < 0.199 is the

no-default case, whereas region α ≥ 0.199 is the default-possible case. Default threshold x0(C(x))

is depicted only in the default-possible case. For comparison, Figure 5 also depicts the benchmark

results with no barrier by dashed lines.

In the no-default region (i.e., α ≥ 0.199), neither value depends on α because the firm will

never go bankrupt. In the default-possible region (i.e., α < 0.199), all the values change with α in

the same way as in the benchmark values with no barrier. In this region, higher α increases the

disadvantages of debt and hence decreases C(x), D(x), and LV (x). Firm value F (x) and CS(x)

also decrease in α due to the decreased leverage effect, whereas E(x) increases in α due to decreased

coupon payments.

By (16) and ∂h/∂α > 0, we can easily prove that x∗B decreases in α. The bottom-right panel

of Figure 3 numerically verifies the sensitivity of x∗B to α. Note that (x/x∗B)
γ changes in the same

way as x∗B because γ does not depend on α. This result is intuitively explained as follows. Higher α

increases the disadvantages of risky debt and decreases the leverage effect. Then, the firm is more

likely to be better off using riskless debt rather than relying on risky debt. For the same reason,

lower corporate tax rate τ decreases x∗B and (x/x∗B)
γ . although we omit depicting a figure with

varying levels of τ . Indeed, lower τ decreases the tax advantages of debt, which decreases the firm’s

motive to use risky debt. The comparative static results have the following implications of public

intervention. The government can prevent the firm from bankruptcy by weaker and fewer market

interventions if it imposes a lower corporate tax rate and a more stringent bankruptcy law with

higher bankruptcy penalty. This is because with such public policies, the firm has fewer advantages

from issuing risky debt and is more likely to choose riskless capital structure.

4.6 Effects of upper limit C̄

So far, we have examined the effects of the key parameters on the results in the baseline model.

This subsection studies the effects of upper limit C̄ in the extended model of Section 3.3. For the

baseline parameter values (i.e., Table 1), the no-default case holds by x∗B = 0.1529 < xB = 0.2

in absence of C̄. By Proposition 4, we have x̄B < x∗B = 0.153 < xB = 0.2 for any C̄, and

hence, the no-default case holds for any C̄. We reset xB = 0.1 to depict both the no-default

and default-possible cases. The other parameter values are set as in Table 1. Figure 6 de-

picts C̄(x), x0(C̄(x)), Ē(x), D̄(x), F̄ (x), L̄V (x), C̄S(x), x̄B , and (x/x̄B)
γ for varying levels of C̄(≤

C0(x) = 0.623). Note that C̄ does not bind the firm for C̄ ≥ C0(x) = 0.623. Region C̄ ≤ 0.261 is

the no-default region, whereas region C̄ > 0.261 is the default-possible region. Default threshold

x0(C̄(x)) is depicted only in the default-possible case. The no-default region is classified into region

C̄ ∈ [0.218, 0.261], where C̄(x) = δxB = 0.218 does not depend on C̄, and region C̄ < 0.218, where

C̄(x) = C̄ (see Proposition 4). For comparison, Figure 5 also depicts the benchmark results with
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no barrier under upper limit C̄ by dashed lines. In this benchmark case, the firm chooses coupon

C̄ because firm value F0(x;C) (see (3)) monotonically increases in C up to C = C0(x) = 0.623.

In the default-possible region (i.e., C̄ > 0.261) of Figure 6, the presence of xB hardly affects

each value. The main reason is that the firm chooses the maximum coupon C̄ regardless of xB .

All the comparative static results are straightforward and the same as the benchmark results with

no barrier. Higher C̄ increases D̄(x) and L̄V (x). The increased leverage effects increase F̄ (x),

although the increased coupon payments decrease Ē(x) and increase C̄S(x). Note that each value

agrees with that of the unconstrained baseline model for C̄ = C0(x) = 0.623 (i.e., the right end of

each panel of Figure 6).

The no-default region C̄ ∈ [0.218, 0.261] is most notable. In this region, the firm chooses riskless

capital structure because x̄B ≤ xB = 0.1 (see the bottom-right panel of Figure 6). Riskless debt ca-

pacity δxB = 0.218 rather than debt issuance limit C̄ binds the firm due to δxB = 0.218 ≤ C̄. Then,

coupon C̄(x) = δxB = 0.218 is constant in this region. This also implies that Ē(x), D̄(x), F̄ (x),

and L̄V (x) are constant in this region. These results are contrasted with the benchmark results

with no barrier.

Last, we turn to the no-default region C̄ < 0.218. In this region, debt issuance limit C̄ rather

than riskless debt capacity δxB = 0.218 binds the firm due to C̄ < δxB = 0.218. Then, the firm

chooses the maximum coupon C̄ as in the benchmark case with no barrier. The comparative static

results other than C̄S(x) = 0 are the same with the standard results with no barrier. Note that

each value converges to that of the all-equity firm for C̄ → 0 (i.e., the left end of each panel of

Figure 6).

As shown by Proposition 4, the bottom-right panel of Figure 6 shows that the critical level

x̄B increases in C̄. State price (x/x̄B)
γ similarly increases in C̄ because γ does not depend on C̄.

These results show that by regulating leverage, the government can reduce the market intervention

threshold and frequency to prevent the firm from bankruptcy. As discussed after Proposition 4, the

optimal policy would lie in {(C̄, x̄B) | 0 ≤ C̄ ≤ C0(x)}, but it may be difficult for the government to

find a perfectly optimal pair (C̄, x̄B). In fact, the government tends to impose a uniform regulation

and protection policy over firms within the same industry, although cash flows are affected by firm-

specific factors and risks. That is, (C̄, x̄B) differs over firms in the industry, but the government

must choose one policy for all the firms. Regulation that is too weak cannot prevent bankruptcy

(cf. the region C̄ > 0.261), whereas regulation that is too strong decreases firm value inefficiently

(cf. the region C̄ < 0.218). Even if the government cannot find a perfect solution for all the firms,

it can choose a policy within the plausible region (cf. the region C̄ ∈ [0.218, 0.261]).

5 Conclusion

This paper investigates the capital structure model with earnings above a reflecting barrier. The

model can approximate a firm with competitive advantage or public protection against downside

risks. In the former, the barrier represents an exit threshold of competitors, whereas in the latter,
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it represents a public intervention threshold. This paper explicitly derives the equity, debt, firm

values, leverage, and credit spreads and shows their comparative statics with respect to barrier

level. The main results are summarized below.

First, and most notably, the barrier generates the riskless debt capacity, and the firm chooses

either riskless or risky capital structure by comparing the values with the maximum riskless debt

and with risky debt. The higher the barrier, the larger the riskless debt capacity, and the firm

tends to prefer riskless capital structure. With intermediate barrier levels, the firm chooses lower

leverage than the level with no barrier to take advantage of riskless debt.

This result can help explain debt conservatism observed in the real world. Indeed, the model

predicts that firms with certain degrees of competitive advantage or public protection can issue

lower levels of riskless debt rather than adjusting risky debt levels based on the trade-off between

the tax benefits and bankruptcy costs of debt. In the no-default case, contrary to the results in

standard trade-off theory, leverage increases with higher volatility and lower growth rate. The latter

result can account for empirical findings of a negative relation between leverage and profitability.

The model also entails several implications of public intervention to protect specific firms or

industries from financial distress. Using the ex ante commitment of an appropriate intervention

threshold, the government can efficiently lead firms to adopt riskless capital structure with low

leverage. With a more stringent bankruptcy law (i.e., higher bankruptcy cost), lower corporate tax

rate, and stronger leverage regulation, the government needs weaker and fewer market interventions

to prevent the firms from bankruptcy.

A Proof of Proposition 1

First, derive the equity value of the firm that operates perpetually, i.e., En(x;C). The derivation

process is the same as in the reflecting barrier models in Chapter 8 of Dixit and Pindyck (1994).

Equity value En(x;C) satisfies the differential equation

µ
∂En(x;C)

∂x
+ 0.5σ2 ∂

2En(x;C)

∂2x
+ (1− τ)(x− C) = rEn(x;C) (18)

for x > xB with the boundary conditions

∂En(xB ;C)

∂x
= 0, (19)

lim
x→∞

En(x;C)

π(x)
<∞. (20)

Note that (19) means that the derivative of En(x;C) must be 0 at reflecting barrier xB because

X(t) surely increases from X(0) = xB , while (20) stems from the fact the probability of X(t)

hitting xB approaches 0 for X(0) → ∞. By (18) and (20), En(x;C) is expressed as

En(x;C) = πx− (1− τ)C

r
+Axγ ,

where A is a constant. By (19), we can derive A as

A = −
(1− α)πx1−γ

B

γ
.
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Then, En(x;C) is expressed as (13). Note that En(xB ;C) ≥ 0 holds if and only if C ≤ δxB .

Accordingly, for C ≤ δxB , En(x;C) ≥ 0 holds for all x ≥ xB , which implies that shareholders

do not prefer to receive default value 0 by declaring default. Then, equity value E(x;C) becomes

En(x;C) in this case. Debt is riskless, and hence Dd(x;C) = C/r holds. By summing this and

En(x;C), we have Fn(x;C) as (15).

On the other hand, for C > δxB , En(xB ;C) < 0 holds, which implies that shareholders prefer

to declare default at a sufficiently low threshold xd(≥ xB). Note that C > δxB is equivalent to

x0(C) ≥ xB . As in the standard literature (e.g., Goldstein, Ju, and Leland (2001), Shibata and

Nishihara (2012), and Sundaresan, Wang, and Yang (2015)), the equity value of the firm that

defaults at the optimal timing, i.e., Ed(x;C), is expressed as

Ed(x;C) = sup
xd≥xB

(
πx− (1− τ)C

r
+

(
x

xd

)γ (
(1− τ)C

r
− πxd

))
= πx− (1− τ)C

r
+

(
x

x0(C)

)γ (
(1− τ)C

r
− πx0(C)

)
= E0(x;C).

Hence, equity value E(x;C) becomes Ed(x;C) = E0(x;C) in this case. It should be noted that

E0(x;C) > En(x;C) holds for x ≥ max{xB , x0(C)} if and only if C > δxB .

Debt value is derived as

Dd(x;C) =
C

r
−
(

x

x0(C)

)γ (
C

r
− (1− α)Fn(x0(C); 0)

)
=
C

r
−
(

x

x0(C)

)γ (
C

r
− (1− α)πx0(C)

)
−
(
x

xB

)γ
(1− α)πxB

γ
.

By summing this and E0(x;C), we also obtain Fd(x;C) as (12).

B Proof of Proposition 2

By (16) and γ < 0, G(x;xB) is continuously increases in xB ∈ [0, x]. By (16), we also have

G(x; 0) = − τx

(r − µ)h
< 0 (21)

G(x; x̃B) = −
(
x

x̃B

)γ
απx̃B
γ

> 0, (22)

where x̃B = γx/(γ−1)h. Therefore, a unique solution x∗B ∈ (0, γx/(γ−1)h) exists to G(x;x∗B) = 0.

For xB < x∗B , G(x;xB) < 0 holds, which leads to maxC≥0 F (x;C) = max{Fd(x;C0(x)), Fn(x; δxB)} =

Fd(x;C0(x)). Hence, the firm chooses coupon C(x) = C0(x) at time 0. Note that C0(x) = δx/h >

δxB follows from xB < x∗B < γx/(γ − 1)h. Then, the equity, debt, firm values, coupon, de-

fault threshold, leverage, and credit spreads are equal to those of the default-possible case with

C = C0(x) in Proposition 1.

For xB ≥ x∗B , G(x;xB) ≥ 0 holds, which leads to maxC≥0 F (x;C) = max{Fd(x;C0(x)), Fn(x; δxB)} =

Fn(x; δxB). Hence, the firm chooses coupon C(x) = δxB at time 0. Then, the equity, debt, firm

values, coupon, default threshold, leverage, and credit spreads are equal to those of the no-default

case with C = δxB in Proposition 1.
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C Proof of Proposition 3

By Propositions 1 and 2, for xB < x∗B , D(x) = Dd(x;C0(x)) increases in xB , while C(x) = C0(x),

x0(C0(x)) = x/h, and E(x) = E0(x;C0(x)) are constant. Then, F (x) and LV (x) increase in xB ,

CS(x) decreases in xB .

At xB = x∗B , coupon C(x) changes from C0(x) = δx/h to δx∗B . It follows from x∗B < γx/(γ−1)h

that C0(x) = δx/h > δx∗B (i.e., a downward jump). At xB = x∗B , E(x) changes from E0(x;C0(x))

to

En(x; δx
∗
B) = πx− (1− τ)δx∗B

r
−

(
x

x∗B

)γ
πx∗B
γ

= E0(x; δx
∗
B)

> E0(x;C0(x))

(i.e., an upward jump), where we obtained the last inequality by C0(x) > δx∗B . By definition of

x∗B (i.e., G(x;x∗B) = 0), Fd(x;C0(x)) continuously changes to Fn(x; δx
∗
B)) at xB = x∗B . By the

continuity of F (x) and the upward jump of E(x), D(x) must jump downward at xB = x∗B . Then,

LV (x) = D(x)/F (x) jumps downward at xB = x∗B , and CS(x) also jumps downward to 0 (i.e.,

riskless debt).

By Propositions 1 and 2, for xB ≥ x∗B , D(x) = δxB/r and F (x) = Fn(x; δxB), C(x) = δxB

increase in xB , while CS(x) is 0. Define

H(xB) = En(x; δxB) = πx− (1− τ)δxB
r

−
(
x

xB

)γ
πxB
γ

and compute the derivative

dH(xB)

dxB
= − (γ − 1)π

γ

(
1−

(
x

xB

)γ)
< 0,

where the last inequality follows from x > xB and γ < 0. Hence, E(x) = En(x; δxB) decreases in

xB . By the decrease of E(x) and increase of D(x), LV (x) increases in xB .

D Proof of Proposition 4

By (17), and γ < 0, Ḡ(x;xB) is continuously increases in xB ∈ [0, x]. By (17), we can show that

Ḡ(x; 0) = − C̄
r
+

(
x

x0(C̄)

)γ (
απx0(C̄) +

τC̄

r

)
= πx− F0(x; C̄) < 0, (23)

Ḡ(x;x∗B) = Fn(x; δx
∗
B)− Fd(x; C̄)

= Fd(x;C0(x))− Fd(x; C̄) > 0, (24)

Ḡ(x; C̄/δ) = −
(
δx

C̄

)γ
απC̄

γδ
+

(
x

x0(C̄)

)γ (
απx0(C̄) +

τC̄

r

)
> 0,

where we used πx = F0(x; 0) < F0(x; C̄) in (23), and we used Fn(x; δx
∗
B) = Fd(x;C0(x)) and the

optimality of C0(x) in (24). Hence, a unique solution x̄B ∈ (0,min{x∗B , C̄/δ}) exists to Ḡ(x; x̄B) =

0.
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For xB < x̄B , Ḡ(x;xB) < 0 holds, which leads to maxC∈[0,C̄] F (x;C) = max{Fd(x; C̄), Fn(x; δxB)} =

Fd(x; C̄). Then, the firm chooses coupon C(x) = C̄ at time 0. The results follow from the default-

possible case with C = C̄ in Proposition 1.

For xB ∈ [x̄B , C̄/δ], Ḡ(x;xB) ≥ 0 holds, which leads to maxC∈[0,C̄] F (x;C) = max{Fd(x; C̄), Fn(x; δxB)} =

Fn(x; δxB). Then, the firm chooses coupon C(x) = δxB at time 0. The results follow from the

no-default case with C = δxB in Proposition 1.

For xB > C̄/δ, debt with any coupon C(≤ C̄) becomes riskless, which leads to maxC∈[0,C̄] F (x;C) =

maxC∈[0,C̄] Fn(x; C̄) = Fn(x; C̄). Then, the firm chooses coupon C(x) = C̄ at time 0. The results

follow from the no-default case with C = C̄ in Proposition 1.

E Proof of Proposition 5

By Propositions 1 and 4, for xB < x̄B , D̄(x) = Dd(x; C̄) increases in xB , while C̄(x) = C̄,

x0(C̄) = C̄/δ, and Ē(x) = E0(x; C̄) are constant. Then, F̄ (x) and L̄V (x) increase in xB , while

C̄S(x) decreases in xB .

At xB = x̄B , coupon C̄(x) changes from C̄ to δx̄B By Proposition 4, C̄ > δx̄B holds. At

xB = x̄B , Ē(x) changes from E0(x; C̄) to

En(x; δx̄B) = πx− (1− τ)δx̄B
r

−
(
x

x̄B

)γ
πx̄B
γ

= E0(x; δx̄B)

> E0(x; C̄)

(i.e., an upward jump), where we obtained the last inequality by C̄ > δx̄B . By definition of x̄B

(i.e., Ḡ(x; x̄B) = 0), Fd(x; C̄) continuously changes to Fn(x; δx̄B) at xB = x̄B . By the continuity of

F̄ (x) and the upward jump of Ē(x), D̄(x) must jump downward at xB = x̄B . Then, L̄V (x) jumps

downward at xB = x̄B , and C̄S(x) also jumps downward to 0.

For xB ∈ [x̄B , C̄/δ], the results follow from the proof of Proposition 3 (see the third paragraph

of Appendix C).

By Propositions 1 and 4, for xB > C̄/δ, Ē(x) = En(x; C̄) increases in xB , while D̄(x) =

C̄/r, C̄(x) = C̄, and C̄S(x) = 0 are constant. Then, F̄ (x) increases in xB , and L̄V (x) decreases in

xB .
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Table 1: Baseline parameter values.

r µ σ τ α xB x = X(0)

0.05 0.01 0.2 0.15 0.4 0.2 1

Table 2: Baseline results.

C(x) E(x) D(x) F (x) LV (x) CS(x)

0.435 14.21 8.7 22.91 0.38 0

Table 3: Benchmark results with no barrier.

C0(x) x0(C0(x)) E0(x) D0(x) F0(x) LV0(x) CS0(x)

0.623 0.287 11.49 10.84 22.32 0.485 0.00751
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Figure 1: Firm value F (x;C) for varying levels of C. The top, center, and bottom panels show F (x;C)

for xB = 0.2 (Baseline), xB = x∗B = 0.153, and xB = 0.1, respectively, where F (x;C) = Fn(x;C) for

C ≤ δxB = 0.435, 0.333, and 0.217, respectively, and F (x;C) = Fd(x;C) for C > δxB = 0.435, 0.333,

and 0.217, respectively. In all the panels, Fd(x;C) takes the maximum at C = C0(x) = 0.623.

26



0 0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8
10

-3

0 0.1 0.2 0.3 0.4 0.5

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

22

24

26

Figure 2: Comparative statics with respect to reflecting barrier xB. The figure depicts coupon C(x),

default threshold x0(C(x)), equity value E(x), debt value D(x), firm value F (x), leverage LV (x), and

credit spread CS(x) in the baseline model by solid lines. Region xB < x∗B = 0.153 is the default-

possible case, whereas region xB ≥ x∗B = 0.153 is the no-default case. The dashed lines represent the

benchmark results with no barrier.
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Figure 3: Comparative statics with respect to volatility σ. The figure depicts coupon C(x), default

threshold x0(C(x)), equity value E(x), debt value D(x), firm value F (x), leverage LV (x), credit

spread CS(x), critical barrier x∗B, and state price (x/x∗B)
γ in the baseline model by solid lines. Region

σ < 0.17 is the default-possible case, while region σ ≥ 0.17 is the no-default case. The dashed lines

represent the benchmark results with no barrier.
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Figure 4: Comparative statics with respect to growth rate µ. The figure depicts coupon C(x), default

threshold x0(C(x)), equity value E(x), debt value D(x), firm value F (x), leverage LV (x), credit

spread CS(x), critical barrier x∗B, and state price (x/x∗B)
γ in the baseline model by solid lines. Region

µ ≤ 0.0252 is the default-possible case, whereas region µ > 0.0252 is the no-default case. The dashed

lines represent the benchmark results with no barrier.
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Figure 5: Comparative statics with respect to bankruptcy cost α. The figure depicts coupon C(x),

default threshold x0(C(x)), equity value E(x), debt value D(x), firm value F (x), leverage LV (x),

credit spread CS(x), critical barrier x∗B, and state price (x/x∗B)
γ in the baseline model by solid lines.

Region α < 0.199 is the default-possible case, whereas region α ≥ 0.199 is the no-default case. The

dashed lines represent the benchmark results with no barrier.
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Figure 6: Comparative statics with respect to upper limit C̄. The figure depicts coupon C̄(x), default

threshold x0(C̄(x)), equity value Ē(x), debt value D̄(x), firm value F̄ (x), leverage L̄V (x), credit spread

C̄S(x), critical barrier x̄B, and state price (x/x̄B)
γ in the extended model with upper limit C̄ by solid

lines. Region C̄ ≤ 0.261 is the no-default case, whereas region C̄ > 0.261 is the default-possible case.

The dashed lines represent the benchmark results with no barrier under upper limit C̄.
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