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1 Introduction

The purpose of this paper is to provide a general equilibrium framework to treat endogenously the

formation of market commodity structure. Here, the market commodity structure means both the quality

of commodities (as in the commodity differentiation under the hedonic approach) and the kinds of com-

modities emerging in an economy (as in the case with market viability under the asymmetric information

approach). Hence, we provide a unified general equilibrium viewpoint on both approaches to endogenize

the market structure problem.

For the quality of commodities, there are classical (including general equilibrium) frameworks like Rosen

(1974), Lancaster (1966), and Mas-Colell (1975), called the hedonic or product-differentiation approach.

In such models, commodities embody some properties called characteristics, which are sources of utilities

and implicitly determine the value of commodities. Since discussions in their papers focus on describing

the equilibrium states with commodity differentiation, they simply set each commodity as an exogenously

given bundle of characteristics. So the framework can be extended to investigate the relationship between

the determination of the quality of commodities and market mechanism. We have similar motivations

as classical monopolystic and oligopolistic product differentiation frameworks like Chamberlin (1937). In

addition to their implications, our general-equilibrium framework can also make the determination of the

quality of commodities tie to social optimality.

On the other hand, problems about what kind of commodities are actually traded have been treated as

the market viability problem. This is one viewpoint of the adverse selection problem discussed by Akerlof

(1970) and/or Rothschild and Stiglitz (1976). For the general-equilibrium treatment, the approaches

of Dubey et al. (2000) and Bisin and Gottardi (1999) are groundbreaking. Problems such as adverse

selection assume that informational asymmetry is a structure that depends not only on individuals but

also on their selling and/or buying standpoints. Dubey et al. (2000) and Bisin and Gottardi (1999)

realizes such selling-buying informational asymmetry by considering a system of pooled insurance in an

economy. Subsequently to these groundbreaking works, Bisin et al. (2011), Correia-da-Silva (2012), and

Meier et al. (2014) treat selling-buying informational asymmetry in a static pure exchange economy with

different market frameworks (as contracts for delivery or generalized goods with the description of agents’

names). One of the authors also treat this problem (Urai et al. 2017) in a standard static Arrow-Debreu

production economy by considering the concept of commodification technology that can treat upper bounds

for individual market trade amounts endogenously through a certain kind of cost structure, which is an

important starting point for this paper’s theme of endogenization of market structure.

What was treated in Bisin et al. (2011) as a general equilibrium problem of future market contracts

under information asymmetry is recast here as a market structure endogenization problem. The key

is commodification technology introduced in Urai et al. (2017), where the problem is restricted to the

endogenization of delivery upperbounds.

It goes without saying that asymmetric information problems such as signaling and adverse selection

play an important role in determining market structure as a “market viability problem.” However, as

mentioned above, market structure is not only a problem related to them. The “market viablity problem”

caused by information asymmetry and the “market quality problem” for product differentiation (combining

characteristics such as the hedonic approach) can be treated in an integrated manner by attributing them

to the “(production) technology” problem of commodification. This is what this paper attempts to do.

In addition, a general and integrated view can be given toward such “technology” in a way that also
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encompasses technology in the normal competitive market. With these various perspectives, the “contract”

model of Bisin et al. (2011) and Urai et al. (2017) are reformulated as our “market commodity” model. The

objective of our model is to address the key issue of “endogenous determination of commodity structure”

in a general equilibrium market.

Here, we give a brief overview of the general equilibrium model of this paper. As in the hedonic

approach, we assume that each commodity is produced from a basic variety of materials, referred to

below as characteristics. The number of all (potentially) possible commodities will be denoted by an

integer λ ≧ 1 and the number of characteristics by ℓ ≧ 1. We assume that exchange is possible only in

the market, through commodities. On the other hand, what gives people utility and serves as an input

for production are the characteristics, i.e., the basic material levels mentioned above. In other words,

consumption and production are considered here as private activities, and the question is how the social

activity (structure) of the market is built upon them. Toward the potential commodities, κ = 1, . . . , λ, for

each seller i (a consumer or a firm), we suppose that there is a technology to transform characteristics (a

vector in Rℓ) into commodities, commodification technology Ci. For more detail, technology Ci enables for

each seller i, to transform a list of certain amounts of characteristics, (vκi ∈ Rℓ)λκ=1, into certain amounts

of commodities, (ϕκ
i ∈ R)λκ=1, together with certain real deliveries of characteristics, (dκi ∈ Rℓ)ℓκ=1 as the

“quality” of commodities, κ = 1, . . . , λ. Hence, the commodification technology of i is defined as a set, Ci,

including the triple, ((vκi )
λ
κ=1, (ϕ

κ
i )

λ
κ=1, (d

κ
i )

λ
κ=1) as its element. (See Fig.1 for an image of these.) Notation

ϕκ
i and dκi for each commodity κ come from the usage of variables for future market contracts in Bisin

et al (2011). Together with the commodification technologies, our model also allows the selling-buying

asymmetry by considering a system of pooled insurance. That is, for each commodity κ, each agent i, as

a buyer, buys zκi units of that commodity while expecting the actual delivery of characteristics per unit

from the market to be sκ ∈ Rℓ, which is equal to its average value derived from what all sellers delivered

to the market (see Fig.2). We will treat sκ ∈ Rℓ (i.e., the quality of commodity κ) for each κ = 1, . . . , λ, as

a parameter like the price. Then, the determination of qualities and quantities (the market structure) will

be identified with a rational expectation equilibrium state including parameters s = (s1, . . . , sλ) ∈ (Rℓ)λ

and p ∈ Rλ (see Fig.3).

In summary, this paper provides a general equilibrium model which determines market structure in

the context of the hedonic approach and of the market viability problem. Even though there are many

approaches that are based on imperfect competition frameworks, our model gives a perfect competition

general equilibrium forms on the market structure determination problem. We believe, specifically, that

this framework can also be a ground for describing an economy with platformization by incorporating a

firm-formation argument like Urai et al. (2023).

The rest of the paper is organized as follows. In Section 2, we provide a two-characteristics and one-

commodity example to establish a concrete image of our model. In Section 3, The Model, we focus on

agent i’s (i = 1, · · · ,m+n) interaction with markets as a seller and a buyer, referring to some assumptions

on the commodification technology. We mention producer’s and consumer’s maximization problems and

equilibrium in Section 4. In Section 5, the theorem and optimality argument are referred. We provide a

specific calculation of the example and proof of theorems in Appendix.

We denote by R the set of real numbers and Rn the n-dimensional Euclidean space. On Rn, there are

three types of order relations, ≦, <, and �, such that for each x = (x1, . . . , xn) and y = (y1, . . . , yn) in

Rn, we have (x ≦ y) ⇐⇒ (∀i = 1, 2, . . . , n, xi ≦ yi), (x < y) ⇐⇒ (x ≦ y and x 6= y), and (x �
y) ⇐⇒ (∀i = 1, 2, . . . , n, xi < yi). By Rn

+ and Rn
++, we denote {x ∈ Rn| 0 ≦ x} and {x ∈ Rn| 0 � x},
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respectively. For n-dimensional Euclidean space Rn and subset A ⊂ {1, . . . , n}, let RA be the subspace of

Rn containing the elements whose k-th coordinate is 0 if k /∈ A. For each finite set A, we denote by ♯A

the number of elements of A. RA
+ denote the non-negative orthant, and RA

++ denote the strictly positive

orthant of RA, where we identify RA with the ♯A-dimensional Euclidean space.

2 An Example (Two Characteristics and One Commodity)

Consider an economy containing two consumers, i = 1, 2, and two characteristics (Grain and Vegetable)

k = G,V . We denote the (grain, vegetable) characteristics space by R2
+. Characteristics are sources of

utility so that the consumption set Xi is a compact subset of R2
+ and initially characteristics are endowed

as ω1 = (1, 0), one unit of Grain for agent 1, and ω2 = (0, 1), one unit of vegetable for agent 2. In this

example we specifically define a utility function for each i = 1, 2 as

ui(x
G
i , x

V
i ) = xG

i x
V
i , (1)

where xi = (xG
i , x

V
i ) ∈ Xi.

Suppose that the characteristics cannot be exchanged directly. Instead, a commodity named LUNCH

formed by these two characteristics will be traded in the market. For simplification, in this example, we

assume that there is at most one kind of commodity embodied with characteristics Grain and Vegetable

traded in the market (so λ = 1 and the general equilibrium market-structure discussion is now reduced to

the viability-quality problem for the single commodity market of Lunch).

[As Sellers]: Each consumer i = 1, 2 as a seller has a commodification technology, Ci, to produce com-

modity, LUNCH, from characteristics, Grain and Vegetable. In this example, consumer i’s commodification

technology is defined as follows:

(ϕi, di, vi) ∈ Ci ⇔ ϕi = vGi + vVi and (vGi , v
V
i ) ≧ di ≧

1

2
(vGi , v

V
i ), (2)

where element (ϕi, di, vi) ∈ Ci means that for the market of LUNCH, consumer i sells ϕi units of LUNCH

and delivers di ∈ R2
+ amount of characteristics while preparing vi ∈ R2

+ amount of characteristics. (See

Fig. 1. Note that in this example, all agents as sellers and/or buyers are Consumers. The value of 1/2,

which indicates the lower limit, has no particular significance.)　

Fig. 1: Interaction with Markets as A Seller
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[As Buyers]: On the other hand, for the commodity, consumers as buyers have a common expectation

s = (sG, sV ) ∈ R2
+ of receiving a certain quantity of each characteristic per unit purchase of commodity

LUNCH through the market. For instance, if zi ∈ R+ is the units of the commodity that consumer i

purchases, consumer i expects to receive zisG quantities of characteristic Grain and zisV quantities of

characteristic Vegetable. (See Figure 2.)

Fig. 2: Interaction with Markets as A Buyer

[Maximization Problems and Equilibria]: Given commodity price p ∈ R++ and common expectation

s, consumer i’s utility maximization problem can be described as follows:

Max ui(x
G
i , x

V
i ) = xG

i xV
i , (3)

sub. to

xG
i = sGzi + ωG

i − vGi , (4)

xV
i = sV zi + ωV

i − vVi , (5)

pϕi = pzi, (6)

(ϕκ
i , d

κ
i , v

κ
i ) ∈ Cκ

i . (7)

Two equations (4) and (5) implies that consumer i decide (i) what to consume xG
i , x

V
i , (ii) what to buy

zi (as a buyer), and (iii) what to prepare vGi , v
V
i (as a seller). The equation (6) is a budget constraint.

Since there is only one market in this economy, budget constraint is ϕi = zi as long as p > 0.

In accordance with the above settings, we now discuss whether equilibrium exists in this economy. A

list ((x∗
i , ϕ

∗
i , d

∗
i , v

∗
i , z

∗
i )i=1,2, p

∗, s∗) is an equilibrium if the following conditions are satisfied:

(i) (utility maximization) given p∗ and s∗, (x∗
i , ϕ

∗
i , d

∗
i , v

∗
i , z

∗
i ) is a solution of consumer i’s utility

maximization problem for each i = 1, 2;

(ii) (market clear) the market is clear,
∑2

i=1 z
∗
i =

∑2
i=1 ϕ

∗
i ;

(iii) (expectation specification) as long as
∑2

i=1 ϕ
∗
i > 0, the expectation s∗ in an equilibrium expec-

tation corresponds with the average amount of characteristics∑2
i=1 d

∗
i∑2

i=1 ϕ
∗
i

=

(∑2
i=1 d

∗
i∑2

i=1 z
∗
i

)
= s∗. (8)
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For the interpretation of the expectation specification condition, see Figure 3.

Fig. 3: Market Equilibrium

Next, we derive equilibria under ŝ∗ = s∗G = s∗V and
1

2
≥ ŝ∗ ≥ 0. (Here, we focus on symmetric solutions.)

(i) When
1

2
≥ ŝ∗ ≥ 1

3
, equilibria are given as

x∗
1 =

(
1

2
,

ŝ∗

2(1− ŝ∗)

)
, ϕ∗

1 =
1

2(1− ŝ∗)
, d∗1 =

(
ŝ∗

1− ŝ∗
, 0

)
, v∗1 =

(
1

2(1− ŝ∗)
, 0

)
, z∗1 =

1

2(1− ŝ∗)
,

x∗
2 =

(
ŝ∗

2(1− ŝ∗)
,
1

2

)
, ϕ∗

2 =
1

2(1− ŝ∗)
, d∗2 =

(
0,

ŝ∗

1− ŝ∗

)
, v∗2 =

(
0,

1

2(1− ŝ∗)

)
, z∗2 =

1

2(1− ŝ∗)
,

p∗ = 1,
1

2
≥ ŝ∗ ≥ 1

3
.

In section 6, we check that the profile is an equilibrium. If 1
4 > ŝ > 0, there is no equilibrium due to

commodification technology.

(ii) When ŝ = 0, no characteristics is traded in a market (vGi = vVi = 0). In this case, although

x∗
1 = (1, 0), x∗

2 = (0, 1), ϕ∗
1 = ϕ∗

2 = z∗1 = z∗2 = 0, d∗1 = v∗1 = d∗2 = v∗2 = (0, 0), p∗ = 1, ŝ∗ = 0 is also an

equilibrium (the market is not viable). Buyer’s expectation might affect the viability of market.

For the discussion of efficiency, we discuss the attainability of a consumption state, (x1, x2). A pair

(x1, x2) is said to be attainable if xi ∈ Xi for i = 1, 2 and satisfies the following (9).

x1 + x2 ≤ ω1 + ω2. (9)

Clearly, the consumption state, (x∗
1, x

∗
2), in the equilibrium profile above is attainable.

A list (xi, ϕi, di, vi, zi)i=1,2 is Pareto optimal if there is no other attainable state (x′
1, x

′
2) such that for

all i = 1, 2, ui(x
′
i) ≥ ui(xi) and at least one i, uj(x

′
i) > ui(xi). If

1
2 > ŝ > 1

4 , there is a loss (v11 − d1∗1 ) > 0

and (v22 − d2∗2 ) > 0. This causes a Pareto inefficiency. However, when ŝ = 1
2 and p∗ = 1, the profile

x∗
1 = x∗

2 = ( 12 ,
1
2 ), ϕ

∗
1 = ϕ∗

2 = z∗1 = z∗2 = 1, d∗1 = (1, 0), d∗2 = (0, 1) establishes the Pareto optimality.

As we have seen above, some equilibria can achieve the Pareto efficiency but others are not. Urai et al.

(2017) shows that the first welfare theorem can be established under specific condition, and this is an

extension of the research. In contrast to Urai et al. (2017)’s model, di is not uniquely determined by

vi. Buyer’s expectation has more significant effect on the Pareto efficiency. We argue that taking care of

buyer’s expectation (about s) is a key to achieve the Pareto efficiency.
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3 The Model

3.1 Characteristics and Market Commodity

In this model, we regard commodity as a bundle of characteristics or basic raw materials from which

consumers benefit and producers produce products. 1 In other words, there is a distinction between the

private use of goods and services and the exchange of “commodities” through social “market” institutions,

both for the consumer and for the producer = firm.2

The number of characteristics are ℓ ≧ 1 indexed by k = 1, . . . ℓ. We denote the set of indices by

L = {1, 2, . . . , ℓ}. From the standpoint of treating a commodity as a bundle of characteristics, it would be

reasonable to start with a subset of L as an index of a commodity. Let us consider a family of non-empty

subsets of L, {Lκ}λκ=1, λ ≧ 1, as the list of all possible commodities. Each commodity κ (= 1, . . . , λ)

may include more than one characteristic in Lκ, so is potentially a mixture of ♯Lκ kinds of characteristics.

Prices are identically given to each market commodity, not characteristics. Hence, the price space is

λ-dimensional, and in this sense, we deal with a commodity differentiation model.3

3.2 Agents as Sellers and Commodification Technologies

There are m > 0 individual consumers indexed by i = 1, . . . ,m, and n > 0 firms indexed by j =

m+ 1, . . .m+ n. We often use a common index i=1,2,...,m+n for consumers and firms to emphasize that

they face the market as sellers. Each firm j has a production technology on characteristics, Yj ⊂ Rℓ. While

only firms have production technologies, every agents have a commodification technology, a set denoted by

(ϕi, di, vi) ∈ Ci ⊂ Rλ
+ ×

∏λ
κ=1 R

Lκ
+ × (Rℓ

+)
λ (i = 1, . . . ,m + n). For an element, (ϕi, di, vi), of Ci, where

ϕi = (ϕ1
i , . . . , ϕ

λ
i ), di = (d1i , . . . , d

λ
i ), and vi = (v1i , . . . , v

λ
i ), we can provide an interpretation as follows.

For each commodity κ, agent i can sell ϕκ
i ∈ R+ units of the market commodity κ and deliver dκi ∈ RLκ

+

units of characteristics while preparing vκi ∈ Rℓ
+ as inputs. Note that we assign a price to each market

commodity but consumers have their preference not over market commodities but over characteristics.4

We make some assumptions on commodification technology Ci as follows. Note that condition (C3)

does not necessarily apply to the case ♯Lκ = 1 involving a normal Arrow-Debreu economy, i.e., where one

characteristic can be regarded as one commodity.

(C1) Ci is a closed and convex set containing (0, 0, 0) ∈ Rλ
+ ×

∏λ
κ=1 R

Lκ
+ × (Rℓ

+)
λ for all i =

1, . . . ,m+ n.

(C2) For any (ϕi, di, vi) ∈ Ci, v
κ
i ≧ dκi for all i = 1, . . . ,m + n and κ = 1, . . . , λ. Moreover, for any

(ϕi, di, vi) ∈ Ci, ϕ
κ
i = 0 implies vκi = 0.

1 In this sense, it may be possible to treat all sellers as a kind of producer, but here we will refer specifically to the agents
who have the transformation technology Yj among the raw materials (characteristics) as producers. Such transformation
technology Yj between raw materials will be distinguished from commodification technology Cj in the following.

2 For example, commodification in this sense means removing crooked cucumbers, or making them uniform in size. As
such, characteristics and their “market product com-mod-it-ization” are dealt with below.

3 Note that we do not exclude the case where Lκ = Lκ′ although κ ̸= κ′.
4 Among these notation, the pair, (dκj , ϕ

κ
j ), for each commodity, κ, can be identified with a “contract” treated in Bisin

et al. (2011) as an element of a compact domain, Φκ × Dκ. So our model can be identified with an extension of their
contract-delivery model.
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(C3) For each i = 1, . . . ,m + n, for each κ = 1, . . . , λ and each sequence (ϕν
i , d

ν
i , v

ν
i )

∞
ν=1 in Ci,

ϕκν
i → ∞ (ν → ∞) implies

∑ℓ
k=1(v

κν
ik − dκνik ) → ∞ (ν → ∞), where the subscript k means the k-th

coordinate, except for the case that ♯Lκ = {k} for a certain k and ϕκν
j = vκνjk = dκjk for all i and ν.

(C4) If (ϕi, di, vi) ∈ Ci, then for every κ = 1, . . . , λ there exists a compact convex set ∆κ ⊂ RLκ
+

such that for all i = 1, . . . ,m+ n,
dκ
i

ϕκ
i
∈ ∆κ where ϕκ

i 6= 0.

Figures 4 and 5 display a typical form of commodification technology.

Fig. 4: d-v Fig. 5: ϕ-v

The condition (C1) is similar to the standard condition of production technologies. The assumption

(C2) is for making the equilibrium fit the reality. Condition (C3) means that except for the market such

that ♯Lκ = 1 and there are no standardization, selection and/or dressing costs, each agent cannot supply a

market commodity without a positive cost per unit at least for all sufficiently large amounts. The exception

for market ♯Lκ = 1 is important since by this, our model include the standard market delivery contract

situation for the Arrow-Debreu type model in which unbounded short position supply contracts without

costs are allowed for.5 Condition (C4) is weak, it only says that for one unit of delivery of characteristics

in market κ, the variety of real deliveries can be confined in a bounded set.

3.3 Agents as Buyers and Expectations of Real Receipts

Commodity κ in the market is really a mixture of ♯Lκ kinds of characteristics and agents as buyers are

assumed to have a common expectation of their receipts for each of their trade (demand) contracts before

choosing their actions. For each market commodity κ, let ϕκ ∈ R++ be the expected aggregate amount

which is contracted to be supplied to the market, and let dκ ∈ RLκ
+ be the vector of expected aggregate

amounts of real goods and/or services that are actually delivered to the market κ. Then, for each unit of

market commodity κ that is demanded, agents as buyers expect that the average amount dκ/ϕκ ∈ RLκ
+ will

be delivered. We use valuable sκ ∈ RLκ to represent for such an average, dκ/ϕκ, for each κ = 1, 2, . . . , λ.

By (C4), we can take sκ in ∆κ for an equilibrium.

5 To include the standard unbounded short sales contracts in our model, we have used one of the simplest method that
directly assigns the cost-exception condition in (C3) of commodification technologies. It would also be possible to obtain
such a condition based on the shapes of commodification technologies.
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4 Maximization Problems and Equilibrium

4.1 Producers’ Problems

Producer j = m+1, . . . ,m+n has a production technology Yj ⊂ Rℓ and a commodification technology

Cj ⊂ Rλ
+ ×

∏λ
κ=1 R

Lκ
+ × Rℓ

+ Given a price p ∈ ∆ = {(p1, . . . , pλ)| p1 ≧ 0, . . . , pλ ≧ 0,
∑λ

κ=1 pκ = 1}
and the expectation of receipts for each market commodity s = (s1, . . . , sλ) = ((s1k)k∈L1 , . . . , (s

λ
k)k∈Lλ

) ∈∏λ
κ=1 ∆

κ ⊂
∏λ

κ=1 R
Lκ , producer j chooses a production plan and market transaction plans, (yj , ϕj , dj ,

vj , zj), where zj = (z1j , . . . , z
λ
j ), to solve the following profit maximization problem:

max p · ϕj − p · zj (10)

subject to

vj = yj + z1j s
1 + z2j s

2 + · · ·+ zλj s
λ, (11)

yj ∈ Yj , (12)

(ϕj , dj , vj) ∈ Cj , (13)

zj ∈ Rλ
+. (14)

Equation (9) implies that agent j should prepare vj = (vj(1), . . . , vj(ℓ)) through his production yj and

purchase z1j s
1 + · · ·+ zλj s

λ. Note that zκj s
κ is a point in Rℓ and (9) is a condition in Rℓ. Restrictions (10)

and (11) mention that yj is producible and firm j is able to interact with markets through commodification

technology Cj . (12) implies the buying amount should be positive.

4.2 Consumers’ Problems

Consumer i = 1, . . . ,m has an initial endowment ωi ∈ Rℓ of characteristics and a consumption set

Xi ⊂ Rℓ with a commodification technology (ϕi, di, vi) ∈ Ci ⊂ Rλ
+×

∏λ
κ=1 R

L+
κ ×Rℓ

+. Given a price system

p and the expectation of their receipts for each commodity in the market, s = (s1, . . . , sλ), consumer i

chooses a plan with market transaction plans (xi, ϕi, di, vi, zi) ∈ Xi ×Ci ×Rλ
+ (zi = (z1i , . . . , z

λ
i )) to solve

the following maximization problem:

max ui(xi) (15)

subject to

vi + xi = ωi + z1i s
1 + z2i s

2 + · · ·+ zλi s
λ, (16)

p · zi = p · ϕi +

m+n∑
j=m+1

θijπj(p, s), (17)

xi ∈ Xi, (18)

(ϕi, di, vi) ∈ Ci, (19)

zi ∈ Rλ
+. (20)

where ui is a utility function of i, πj(p, s) is the profit of j under price p and expectation s = (sκ)λκ=1

(under the maximization problem (10) – (14) and θij denotes consumer i’s share of the profit of producer

j (non-negative real numbers satisfying
∑m

i=1 θij = 1 for each j). Interpretations of restrictions are almost

same with producers problems. Restriction (15) is the budget constraint in the usual general equilibrium

settings.
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4.3 Equilibrium

Denote by E := ((Xi, Ci, ωi, ui, (θij)
m+n
j=m+1)

m
i=1, (Yj , Cj)

m+n
j=m+1) the economy described before.

Definition 1. (Equilibrium) For an economy E , a state ((xi, ϕi, di, vi, zi)
m
i=1, (yj , ϕj , dj , vj , zj)

m+n
j=m+1) ∈∏m

i=1

(
Xi×Ci×Rλ

+

)
×
∏m+n

j=m+1

(
Yj×Cj×Rλ

+

)
and (p, s) ∈ ∆×

∏λ
κ=1 ∆

κ is an equilibrium if it is a solution

of the profit maximization problem (8)–(12), and utility maximization problem (13)–(18), and satisfies the

market clearing condition (21) with expectation specification (22) for each κ ∈ {1, . . . , λ} and k ∈ Lκ.

The market clearing condition and expectation specification are defined as follows.

m+n∑
i=1

zκi =

m+n∑
i=1

ϕκ
i , (21)

∑m+n
i=1 dκi∑m+n
i=1 ϕκ

i

(
=

∑m+n
i=1 dκi∑m+n
i=1 zκi

)
= sκ as long as

m+n∑
i=1

ϕκ
i

(
=

m+n∑
i=1

zκi

)
> 0. (22)

Condition (21) is the standard market clearing condition. Condition (22) says that actual mixture ratio of

market κ (the left hand side) is rationally expected by all the agents (the right hand side). Note that we only

consider Eq. (22) when
∑m+n

i=1 ϕκ
i (that equals

∑m+n
i=1 zκi ) is positive. Hence, if

∑m+n
i=1 ϕκ

i

(
=
∑m+n

i=1 zκi

)
=

0, we have no restriction on the expectation specifications.

Even though our equilibrium is defined by means of trade quantities (zi)
n+m
i=1 and the trading process

includes costs in real (characteristics) goods and/or services that are represented by agents’ commodi-

fication technologies, it is easy to check (by condition (C3)) that any equilibrium characteristics state

((xi)
m
i=1, (yj)

m+n
j=m+1) satisfies the following condition:

m∑
i=1

xi ≤
m+n∑

j=m+1

yj +

m∑
i=1

ωi. (23)

We define an attainable characteristics state. The pair ((xi)
m
i=1, (yj)

m+n
j=m+1) is attainable if conditions

xi ∈ Xi, yj ∈ Yj , and (23) are satisfied. We consider an allocation ((xi)
m
i=1, (yj)

m+n
j=m+1) without any

restriction and cost of market interaction. Let us define the attainable characteristics set for each agent

i = 1, . . . , n+m as follows:

X̃i
def.
= {xi ∈ Xi |xi is a component of a pair ((xi)

m
i=1, (yj)

m+n
j=m+1) which satisfies (23).}

Ỹj
def.
= {yj ∈ Yj | yj is a component of a pair ((xi)

m
i=1, (yj)

m+n
j=m+1) which satisfies (23).}

If a state ((xi, ϕi, di, vi, zi)
m
i=1, (yj , ϕj , dj , vj , zj , )

m+n
j=m+1, p, s) satisfies (9), (14), (19), and (20), then each

agents’ real state (xi or yj) is attainable; xi ∈ X̃i (i = 1, . . . , n) and yj ∈ Ỹj (j = m + 1, . . . ,m + n). We

define the pareto optimality based on the attainable set.

Definition 2. (Pareto Optimality) A state ((xi, ϕi, di, vi, zi)
m
i=1, (yj , ϕj , dj , vj , zj , )

m+n
j=m+1) ∈

∏m
i=1

(
Xi ×

Ci×Rλ
+

)
×
∏m+n

j=m+1

(
Yj×Cj×Rλ

+

)
is pareto optimal if there is no other attainable pair ((x̂i)

m
i=1, (ŷ)

m+n
j=m+1)

such that for all i = 1, · · · ,m, ui(x̂i) ≥ ui(x) and at least one i, ui(x̂i) > ui(xi).

We argue that under specific conditions, an equilibrium can be pareto optimal next section.
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5 Equilibrium Existence and Optimality Arguments

We now state a general-equilibrium existence theorem for the economy:

Theorem1. Economy E := ((Xi, Ci, ωi, ui, (θij)
m+n
j=m+1)

m
i=1, (Yj , Cj)

m+n
j=m+1) has an equilibrium,

((x∗
i , ϕ

∗
i , d

∗
i , v

∗
i , z

∗
i , v

∗
i )

m
i=1, (y

∗
j , ϕ

∗
j , d

∗
j , v

∗
j , z

∗
j )

m+n
j=m+1, p

∗, s∗), if the following conditions are satisfied:

(Consumers) Each consumer i = 1, . . . ,m has a non-empty closed convex consumption set Xi ⊂ Rℓ
+

that is bounded from below, a convex preference induced by a strictly monotonic 6 and continuous

utility function ui : Xi → R+, and a strictly positive initial endowment ωi ∈ Rℓ
++.

(Producers) For each j = m+ 1, . . . ,m+ n, Yj is a closed convex set containing −Rℓ
+.

7 　

(Attainable Set) Each agents’ attainable set (X̃i (i = 1, . . . ,m) or Ỹj (j = m + 1, . . . ,m + n) ) is

bounded.

(Commodification Technologies) For each agent i = 1, . . . ,m + n, commodification technology

Ci satisfies conditions (C1) – (C4).

In our setting, we must treat demand and supply (zi and vi) as being distinguished from consumption

and production (xi and yj), as in the case with transactions in asset markets, and treat producers or

consumers whose actions are restricted not only by their technologies or standard budgets but also by

their buying and selling constraints (9) and (14). Since transaction plans zi and vi are not bounded, and

the expectation s = (sκ)λκ=1 decides the estimation of real receipts, continuity of excess demands with

respect to prices and expectations may not be warranted in some boundary cases such as sκk → 0 for some

κ and k ∈ Lκ together with an agent’s demand like zκi → ∞. In this paper, we overcome this problem by

condition (C3) for commodification technologies, which is a natural condition for them as a cost structure

due to their technological limits. Note that such a discontinuity problem is likely to occur in a market in

which the adverse selection problem (sκk → 0) exists, but our method do not exclude the existence of the

adverse selection behaviors at all. We only exclude the possibility of discontinuity by considering the cost

structure in supplying market commodities.

Condition (C3) is crucial for the existence result. To see this, let us confirm the attainability condition

for the real goods and services. Consider each k-th coordinate of
∑m

i=1(ωi − xi) +
∑m+n

j=m+1 yj :

m∑
i=1

(ωik − xik) +

m+n∑
j=m+1

yjk
(9),(14)
= (

m+n∑
i=1

v1ik) + · · ·+ (

m+n∑
i=1

vλik)− (

m+n∑
i=1

z1i )s
1
k − · · · − (

m+n∑
i=1

zλi )s
λ
k

=

λ∑
κ=1

[
m+n∑
i=1

vκik − (

m+n∑
i=1

zκi )s
κ
k

]
. (24)

If
∑m+n

i=1 ϕκ
i = 0 for some κ, we have vκik = 0 for all i by condition (C2). If

∑m+n
i=1 ϕκ

i > 0 for some κ,

the κ-th term of the right hand side of equation (24) is equal by equations (12) and (13) to:

m+n∑
i=1

(vκik − dκik), (25)

6 A function u : Rℓ → R is strictly monotonic if x′ ≧ x, x′ ̸= x implies ui(x
′) > ui(x).

7 Here, a production technology may have a non empty intersection with the positive part of the first quadrant.
Otherwise, note that there may exist a trivial equilibrium, ((x∗

i , ϕ
∗
i , d

∗
i , v

∗
i , z

∗
i , v

∗
i )

m
i=1, (y∗j , ϕ

∗
j , d

∗
j , v

∗
j , z

∗
j )

m+n
j=m+1, p

∗, s∗) =

((0, 0, 0, 0, 0, 0)mi=1, (0, 0, 0, 0, 0)
m+n
j=m+1, 0, 0).
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which is non-negative by (C2). Hence, the equilibrium state is feasible and the amount vκik − dκik for each

i and κ (if it is not equal to zero) necessarily cause a welfare loss as long as the preferences are strictly

monotonic (suboptimality property). 8

Note here that conditions (C2) and (C3) do not exclude the case that vκi −dκi = 0 at least for all vκi in a

certain bounded domain, K ⊂ Rl. Furthermore, let us turn our attention to the simple case, where each

commodification technology is represented by a function. That is, on some bounded domain (including

K) of vκi , let d
κ
i and ϕκ

i be represented by functions, dκi (v
κ
i ) and ϕκ

i (v
κ
i ), respectively. To be more specific,

suppose dκi be identity function (dκi (v
κ
i ) = vκi ) and ϕκ

i (v
κ
i ) = Σk∈Lκ vκik in that domain. This still leaves

our model as a generalization of Bisin et al. (2011). This is because the unit of “contract” in their model

can be interpreted as some vκi such that ϕκ
i (v

κ
i ) = 1, and their model has a delivery upper bound. We

then obtain the following proposition about the optimality of the equilibrium.

Theorem2. (Optimality): Suppose that equilibrium vκi is in the bounded domain mentioned above for

each i, (i.e. the above simplification dκi (v
κ
i ) = vκi and condition of ϕκ

i = Σk∈Lκvκik holds for each i in

equilibrium). Suppose additionally that at equilibrium, for each characteristic k, there exists a market κ

such that sκk > 0, then the equilibrium state is Pareto-optimal.9

The above suboptimality argument clearly suggested that the avoidance of the condition (C3) (non-

essentiality of the adverse selection problem) is a necessary condition for the optimality of equilibrium

(non-essentiality of government intervention) in the endogenization problem of market structure. If we

consider this theorem in conjunction with this, it can be said to suggest that the avoidance of the condition

(C3) (non-essentiality of the adverse selection problem) is also a sufficient condition for the optimality of

equilibrium. More precisely, see the following remark.

Remark (Optimality and Suboptimality) When the presence of adverse selection is essential to ensure

the existence of equilibrium, the condition (C3) is indispensable. Hence as we argued in (25), an equi-

librium is sub-optimal. However, consider that (ϕ, d) are functions of v as in theorem 2, the equilib-

rium belongs to a bounded set, and di = vi is valid. The condition (C3) is not necessary. If (C3) is

not essentially the key to the existence, then the equilibrium is pareto optimal. It implies that (C3),

as a condition of a cost structure between d and v, describes problems of adverse selection. In gen-

eral, ϕκ
i and dκi may not be functions of vκi . That is, consider an element (ϕi, di, vi) ∈ Ci, where

ϕi = (ϕ1
i , · · · , ϕλ

i ) and di = (d1i , · · · , dλi ). There may be a market κ and a pair (ϕ̂κ
i , d̂

κ
i ) 6= (ϕκ

i , d
κ
i ) such that

((ϕ1
i , · · · , ϕ

κ−1
i , ϕ̂κ

i , ϕ
κ+1
i · · · , ϕλ

i ), (d
1
i , · · · , d

κ−1
i , d̂κi , d

κ+1
i , · · · , dλi ), vi) is also an element of Ci. In this case,

as we mentioned in section 2, a pareto inefficient equilibrium and pareto efficient equilibrium may exist at

the same time. Thus, the above property may cause the existence of pareto inefficient equilibrium, because

the expectation s is a given paremeter to solve utility maximization and profit maximization problems,

6 Concluding Remarks

1. (An Alternative Notion of Optimality) As we have noted in the end of section 4, our equilibrium

situation with the commodification-cost like (C3) is necessarily related to the suboptimality property. It

8 The discussion of optimality is only on the attainable set, not market-attainable. That is, ((x∗
i )

m
i=1, (y

∗
j )

m+n
j=m+1) is pareto

optimal if there is no attainable pair (x′
i)

m
i=1, (y

′
j)

m+n
j=m+1 such that ∀i = 1, · · · ,m, ui(x

′
i) ≥ ui(x

∗
i ) and ∃i, ui(x

′
i) > ui(x

∗
i ).

9 This is because our model do not use the trading upper bounds. For proof, see Theorem 1 of Urai, Yoshimachi, and
Shiozawa (2017).
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seems, however, that we may consider two kinds of optimality concepts in this model, (i) the optimality

that individuals can establish by exchanging their characteristics directly in the economy (without using

the commodification technology), as defined in this paper, and (ii) the optimality that individuals can

achieve by interacting with markets. While an economy do not generally achieve the Pareto optimality in

the meaning of (i), it may happen that with some conditions, the economy can establish optimality in the

sense of (ii). Also, discussion (ii) suggests that an inefficiency may happen merely through the expectation

among buyers. The treatment of expectation, therefore, is economically important even if an economy

does not establish the Pareto optimality in the meaning of (i).

2. (Asymmetric Information and Market Viability Problem) The models of Bisin et al.(2011)

and Urai et al. (2017) are generalized applications of the DGS bankruptcy model (Dubey et al. 2005) to

the asymmetric information problem. In these models, asymmetric information is resolved by self-fulfilling

(average) expectations in the market, and in our model the cost of building such a market structure

corresponds to the (C3)-condition represented by the signaling cost. The problem of endogenization of

market structure under various product differentiation possibilities is here solved as a market viability

problem, i.e., the problem of resolving asymmetric information through self-fulfilling expectations.

3. (Incomplete Market Dynamics) It would be worthwhile to extend our result to the dynamic

general equilibrium models with incomplete markets. As is well known that under the incomplete market

(rational expectation asset pricing) framework, it is difficult to treat production because of the existence

of new assets based on a future production action (see, e.g., Mas-Colell et al. 1995, Ch. 19). On the other

hand, the need for a model that can include entities creating new markets as an equilibrium action is even

greater today. A, so called, platform firm like GAFAM can be identified (from the general equilibrium

viewpoint) with a technology creating new commodities and a new market structure, i.e., based on a

commodification technology treated here.

4. (Firm Formation Dynamics) The importance of dynamics pointed out in the previous remark,

should also be argued with the problem how we could incorporate the creation of new firms or the endo-

genized firm structure. It would be interesting to relate our result with the general equilibrium (together

with the cooperative game) argument including firm formation like Boehm (1974), Greenburg (1979),

Ichiishi (1997) and some resent researchs of the authors, Urai-Murakami-Chen (2023), Urai et al. (2023)

including Shiozawa, etc. In preparation for such dynamicization, the authors have begun to apply the

endogenization problem of market structure treated in this paper to a monetary dynamic economy with

an overlapping generation structure (Murakami et al. 2023).

5. (Numbers of Characteristics and Commodities) In this paper, the number of basic charac-

teristics, l, and the possible number of commodities, λ, are taken to be finite. From the mathematical

viewpoint, it would be natural to consider how our result can be extended to the infinite number of the

basic characteristics (as in Mas-Colell 1975) and/or possible commodities. Finally, to emphasize, our

model does not exclude that the same bundle of (the names of) characteristics correspond to two different

commodities, so our model includes the treatment of commodity differentiation like Mas-Colell (1975), in

this respect.
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Appendix

Appendix A : Example Calculation Detals

This appendix provides the details of the example calculation given in Section 2. The notation for

characteristics, G and V , used in Section 2 are replaced here by 1 and 2, respectively, to simplify the

notation.

Suppose a pure exchange economy with two consumers indexed by i = 1, 2, and there are two types

of characteristics k = 1, 2 ( ℓ = 2 ) and is only one market (λ = 1). Consumers have preference over

characteristics and the quality of goods will correspond with a common expectation of consumers s ∈ Rℓ

in equilibrium. We let ωk
i ≥ 0 be player i’s initial endowment of characteristics. Initial endowment is

given as ω1 = (1, 0), ω2 = (0, 1) so that two consumers have incentives to trade through the market. Each

player’s utility function is given as ui(x
1
i , x

2
i ) = (x1

i )(x
2
i ), where x1

i and x2
i are player i’s consumption of

character 1 and 2.

(ϕ1
i , d

1
i , v

1
i ) ∈ Ci ⇔ v1i ≥ 0, v2i ≥ 0 ϕi = (v1i + v2i ) (v1i , v

2
i ) ≥ di ≥ 1

2
(v1i , v

2
i ). (26)

In this setting, we consider a situation where consumers have discretion over the delivery of characteristics,

while agents do not have in Urai et al (2017)’s model. In Urai et al (2017), it is verified that any equilibrium

can achieve pareto efficiency. In contrast, our framework can provide the case of inefficiency of equilibrium,

because, to a certain extent, people have a control over their delivery. Following the setting, the utility

maximization problem is

max ui(x
1
i , x

2
i ) = (x1

i )(x
2
i ), (27)

sub.to

x1
i = s1zi + ω1

i − v1i , (28)

x2
i = s2zi + ω2

i − v2i , (29)

pϕi = pzi, (30)

(ϕi, di, vi) ∈ Ci. (31)

Hereafter, we consider a case of
1

2
≥ ŝ := s1 = s2.

Define a Languladian function as follows:

L(v1i , v
2
i , ν1, ν2) := (ω1

i + (ŝ− 1)v1i + ŝv2i )(ω
2
i + ŝv1i + (ŝ− 1)v2i )− ν1v

1
i − ν2v

2
i .

By Karush-Kuhn-Tucker condition, we have

∂L

∂v1i
= (ŝ− 1)(ω2

i + ŝv1i + (ŝ− 1)v2i ) + ŝ(ω1
i + (ŝ− 1)v1i + ŝv2i )− ν1 = 0,

∂L

∂v2i
= ŝ(ω2

i + ŝv1i + (ŝ− 1)v2i ) + (ŝ− 1)(ω1
i + (ŝ− 1)v1i + ŝv2i )− ν2 = 0,

v1i = 0 or ν1 = 0,

v2i = 0 or ν2 = 0.
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(i) v1i = v2i = 0. Then x1
i = ω1

i , and x2
i = ω2

i . Then the utility is ω1
i ω

2
i .

(ii) ν1 = 0, ν2 = 0.

(
−2ŝ(1− ŝ) ŝ2 + (1− ŝ)2

ŝ2 + (1− ŝ)2 −2ŝ(1− ŝ)

)(
v1i
v2i

)
=

(
−ŝ 1− ŝ

1− ŝ −ŝ

)(
ω1
i

ω2
i

)
(32)

Then the determinant of the matrix

(
−2ŝ(1− ŝ) ŝ2 + (1− ŝ)2

ŝ2 + (1− ŝ)2 −2ŝ(1− ŝ)

)
is not zero if ŝ 6= 1

2 .

When ŝ 6= 1
2 ,(
v1i
v2i

)
=

1

(ŝ2 − (1− ŝ)2)2

(
2ŝ(1− ŝ) ŝ2 + (1− ŝ)2

ŝ2 + (1− ŝ)2 2ŝ(1− ŝ)

)(
−ŝ 1− ŝ

1− ŝ −ŝ

)(
ω1
i

ω2
i

)
. (33)

Since

(
x1
i − ω1

i

x2
i − ω2

i

)
= −

(
1− ŝ −ŝ

−ŝ 1− ŝ

)(
v1i
v2i

)
, and

−1

(ŝ2 − (1− ŝ)2)2

(
1− ŝ −ŝ

−ŝ 1− ŝ

)(
2ŝ(1− ŝ) ŝ2 + (1− ŝ)2

ŝ2 + (1− ŝ)2 2ŝ(1− ŝ)

)(
−ŝ 1− ŝ

1− ŝ −ŝ

)

=
1

ŝ2 − (1− ŝ)2

(
ŝ 1− ŝ

1− ŝ ŝ

)(
−ŝ 1− ŝ

1− ŝ −ŝ

)
= −

(
1 0

0 1

)
, we have x1

i = x2
i = 0.

Then, the utility ui = 0.

If ŝ =
1

2
, then (32) yields (

− 1
2

1
2

1
2 − 1

2

)(
v1i
v2i

)
=

(
− 1

2
1
2

1
2 − 1

2

)(
ω1
i

ω2
i

)
(34)

There are infinitely many solutions as long as both v1i and v2i are non-negative and satisfy v1i −v2i = ω1
i −ω2

i .

In this case, x1
i = x2

i =
ω1
i + ω2

i

2
. Then ui =

(
ω1
i + ω2

i

2

)2

.10

(iii) ν1 = 0, v2i = 0.

The Karush-Kuhn-Tucker condition becomes

∂L

∂v1i
=(ŝ− 1)(ω2

i + ŝv1i ) + ŝ(ω1
i + (ŝ− 1)v1i ) = 0, (35)

∂L

∂v2i
= ŝ(ω2

i + ŝv1i ) + (ŝ− 1)(ω1
i + (ŝ− 1)v1i )− ν2 = 0. (36)

By (35), 2ŝ(1 − ŝ)v1i = ŝ ω1
i − (1 − ŝ)ω2

i . If
1− ŝ

ŝ
ω2
i > ω1

i , 0 > v1i . This violates a condition that v1i

is non-negative. We consider the case where the initial endowment satisfies the condition ω1
i >

1− ŝ

ŝ
ω2
i .

We have v1i =
ŝ ω1

i + (ŝ− 1)ω2
i

2ŝ (1− ŝ)
. By (36), ν2 = −(1− ŝ)ω1

i + ŝ ω2
i + (ŝ2 + (1− ŝ)2) v1i . Finally, the utility

ui =

(
1

2
ω1
i +

1− ŝ

2ŝ
ω2
i

)(
ŝ

2(1− ŝ)
ω1
i +

1

2
ω2
i

)
.

10 It will be stated that, in this case, both consumer one and consumer two can achieve Pareto Optimality.
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(iv) v1i = 0, ν2 = 0.

The Karush-Kuhn-Tucker condition becomes

∂L

∂v1i
= (ŝ− 1)(ω2

i + (ŝ− 1)v2i ) + ŝ(ω1
i + ŝv2i )− ν1 = 0, (37)

∂L

∂v2i
= ŝ(ω2

i + (ŝ− 1)v2i ) + (ŝ− 1)(ω1
i + ŝv2i ) = 0. (38)

If ω1
i >

ŝ

1− ŝ
ω2
i , 0 > v2i , which violates that v2i is non-negative. We suppose that

ŝ

1− ŝ
ω2
i ≥ ω1

i . Then

v2i =
(ŝ− 1)ω1

i + ŝ ω2
i

2ŝ (1− ŝ)
and ν1 = (ŝ2 + (1 − ŝ)2)

(ŝ− 1)ω1
i + ŝω2

i

2ŝ (1− ŝ)
+ ŝω1

i + (1 − ŝ)ω2
i . Then the utility

ui =

(
1

2
ω1
i +

ŝ

2(1− ŝ)
ω2
i

)(
1− ŝ

2ŝ
ω1
i +

1

2
ω2
i

)
.

We apply the analysis above for the case where initial endowments are given as ω1 = (1, 0), ω2 = (0, 1). If

1
2 ≥ ŝ, comsumer 1 and 2’s utility u1 = u2 =

ŝ

4(1− ŝ)
. Next, we discuss equilibria. When v21 = v12 = 0, then

v11 = v22 =
1

2(1− ŝ)
. In addition, d21 = d12 = 0 by the condition (31). Since the expectation corresponds

the average amount of characteristics,

(
ŝ

ŝ

)
=


d11 + d21
ϕ1 + ϕ2

d12 + d22
ϕ1 + ϕ2

 =

 d11(1− ŝ)

d22(1− ŝ)

 (39)

Then, we have d11 = d22 =
ŝ

1− ŝ
= 2 ŝ v11 = 2 ŝ v22 . By (31), 1

2 ≥ ŝ ≥ 1
4 . If ŝ is less than 1

2 , Pareto efficiency

cannot be established. The example is an extensive case of Urai et al(2017). According to a proposition

in Urai et al (2017), Pareto efficiency can be achieved under a particular condition. However, we have a

different conclusion in our model. One reason is that people have a certain discretion over the delivery of

characteristics.

Appendix B: Proof of Theorem 1.

The proof arguments on the existence theorem would be reduced to the standard general equilibrium ones

except for the next two points: (i) we have to appropriately select valuables for constructing expectation

parameter sκ for each κ in (22) to define a fixed-point mapping, and check that for the fixed-point to be

called an equilibrium, such selections are harmless, and (ii) with respect to expectation parameter sκ, the

convergence, sκk → 0 for some k, causes the non-continuity (non-closedness) problem on agents’ constraint

correspondences.

For the first problem, we will only use ϕκ
i in constructing sκ through the equation in (22). For the

second problem, we can appeal to the ordinary truncation argument, i.e., setting a large cube and taking

its limit. The price space is ∆ = {(p1, . . . , pλ)| p1 ≧ 0, . . . , pλ ≧ 0,
∑λ

κ=1 pκ = 1}. Moreover, by (C4), we

have ∆κ, the set of all real-receipt expectations for market κ, for κ = 1, . . . , λ.

Producers: Each real technology Yj ⊂ Rℓ, j = m+1, . . . ,m+n as well as commodificaton technology

Cj ⊂ Rλ
+ ×Πλ

κ=1R
Lκ ×Rl

+, j = m+ 1, . . . ,m+ n , is assumed to be closed and convex, and to contain 0.

Hence, the set of all solutions to the maximization problem (10)–(14) under price p ∈ ∆ and expectation s =
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(sκ)λκ=1 ∈
∏λ

κ=1 ∆
κ, ηj(p, s) ⊂ Rℓ×Rλ+λℓ+ℓ+λ

+ is closed and convex. Now, take an arbitrarily large number

t > 0 and consider maximization problem (10) subject to (9)–(12) with (yj , ϕj , dj , vj , zj) ∈ [−t, t]ℓ ×
[0, t]λ+λℓ+ℓ+λ. In words, producers problems are restricted to [−t, t]ℓ×[0, t]λ+λℓ+ℓ+λ. We denote by ηtj(p, s)

the set of solutions to the restricted maximization problem. The non-emptiness, closedness, and convexity

of ηtj(p, s) are clear. We can also prove that the correspondence ηtj : ∆×
∏λ

κ=1 ∆
κ → [−t, t]ℓ×[0, t]λ+λℓ+ℓ+λ

has a closed graph. Indeed, the constraint correspondence (p, s) 7→ { (yj , ϕj , dj , vj , zj) | (yj , ϕj , dj , vj , zj) ∈
[−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ satisfies (9)–(12) under (p, s) } has a closed graph and is lower semi-continuous,

and thus also continuous. Hence, Berge’s maximum theorem (cf.Debreu (1959) , p. 19, Theorem (4)) is

applicable. Here, the continuity of the profit function of this truncated problem, πt
j(p, s), is simultaneously

assured by Berge’s theorem.

Consumers: As in the producer case, the set of all solutions to the maximization problem (15), subject

to (14)–(18) under p ∈ ∆ and s ∈
∏λ

κ=1 ∆
κ, ξi(p, s), is closed and convex. Let ξti(p, s) denote the set of

solutions to maximization problem (15) subject to (14)–(18) with (xi, ϕi, di, vi, zi) ∈ [−t, t]ℓ×[0, t]λ+λℓ+ℓ+λ,

and with each profit πj(p, s) in Eq. (16) replaced by πt
j(p, s), which is the maximized profit of producers

in the truncated maximization problem. We assume that each consumer has a strictly positive initial

endowment, ωi ∈ Rℓ
++. Then it is also possible to verify that the correspondence ξti : ∆ ×

∏λ
κ=1 ∆

κ →
[−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ is non-empty closed convex valued and has a closed graph. In particular, for the

closed graph of ξti , check that the constraint correspondence ,(p, s) 7→ {(xi, ϕi, di, vi, zi)| (xi, ϕi, di, vi, zi) ∈
[−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ satisfies (14)–(18) under (p, s)whereπj in Eq. (9) is replaced by πt

j}, has a closed

graph and is lower semi-continuous. Then apply Berge’s maximum theorem again.

Fixed Points and Limit Arguments: Take a number t > 0 sufficiently large for all the bounded

attainable sets, Ỹj(j = m + 1, . . . ,m + n) and X̃i(i = 1, . . . , n), to be a subset of the interior of [−t, t]ℓ.

Restrict the individual maximization problems (10)-(14) and (15)-(20) to the set [−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ.

Consider ηtj , ξ
t
i , and the product map Φ of these correspondences:

Φ : ∆×
λ∏

κ=1

∆κ 3 (p, s) 7→
m∏
i=1

ξti(p, s) ×
m+n∏

j=m+1

ηtj(p, s) ⊂
(
[−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ

)m+n
. (40)

The mapping Φ has a closed graph since each of ηtj and ξti is so.

Define a price-expectation manipulation correspondence as follows:

Ψ : ([−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ)m+n 3 (ϕi, zi, vi)
m+n
i=1 7→ Θ((ϕi, zi)

m+n
i=1 )× Ξ((vi)

m+n
i=1 ) ⊂ ∆×

λ∏
κ=1

∆κ, (41)

where Θ denotes the price manipulation mapping such that, for each (zi)
m
i=1, Θ((zi)

m
i=1) assigns a set of

prices which evaluate the excess-demand with the highest value {p ∈ ∆| ∀q ∈ ∆, q ·
∑m+n

i=1 (zi − ϕi) ≦
p ·
∑m+n

i=1 (zi − ϕi)}, and Ξ is the correspondence that assigns the real mixture ratio of the goods for each

market. More precisely, we define the κ-th coordinate of Ξ by

Ξκ((vi)
m+n
i=1 ) =

∑m+n
i=1 dκi∑m+n
i=1 ϕκ

i

∈ RLκ , (42)

as long as
∑m+n

i=1 ϕκ
i 6= 0, and otherwise by Ξκ((vi)

m+n
i=1 ) = ∆κ. Note that the right hand side of Eq. (42)

is always an element of ∆κ when
∑m+n

i=1 ϕκ
i 6= 0 by condition (C4) for (ϕκ

i , d
κ
i )

λ
κ=1. It is easy to check that

Θ and Ξ are non-empty closed convex valued correspondence with a closed graph. In particular, Ξ has a

closed graph since the right hand side of Eq. (42) is continuous when
∑m+n

i=1

(∑
k∈Lκ

ϕik

)
6= 0.
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Now, the product of the mappings Φ and Ψ,

Φ×Ψ :
(
[−t, t]ℓ×[0, t]λ+λℓ+ℓ+λ

)m+n×∆×
( λ∏
κ=1

∆κ
)
→
(
[−t, t]ℓ×[0, t]λ+λℓ+ℓ+λ

)m+n×∆×
( λ∏
κ=1

∆κ
)
, (43)

is a non-empty closed convex valued correspondence with a closed graph. Then all of the conditions for

Kakutani’s fixed point theorem are satisfied. Φ×Ψ has a fixed point
(
(xt

i, ϕ
t, dt, vti , z

t
i)

m
i=1, (y

t
j , ϕ

t
j , d

t
j , v

t
j ,

ztj)
n
j=1, p

t, st
)
∈
(
[−t, t]ℓ × [0, t]λ+λℓ+ℓ+λ

)m+n × ∆ ×
(∏λ

κ=1 ∆
κ
)
. Equation (17) with (10) gives Walras’

Law:

(p, s) ∈ ∆×
λ∏

κ=1

∆κ and z − ϕ ∈ −
m∑
i=1

ξti(p, s)−
m+n∑

j=m+1

ηtj(p, s) =⇒ p · (z − ϕ) = 0. (44)

Under the standard argument, this means that, by the definition of Θ, the summation of (ϕt
i, z

t
i)

m+n
i=1 must

satisfy q · (
∑m+n

i=1 zti − ϕt
i) ≦ pt · (

∑m+n
i=1 zti − ϕt

i) = 0 for all q ∈ ∆, and so for each κ = 1, . . . , λ, the κ-th

coordinates of (ϕt
i, z

t
i)

m+n
i=1 , (ϕκt

i , zκti )m+n
i=1 , must be such that

∑m+n
i=1 (zκti − ϕκt

i ) ≦ 0, where
∑m+n

i=1 (zκti −
ϕκt
i ) < 0 if and only if the price of κ-th commodity, ptκ, equals 0. Moreover each of the price pκ in market κ

is strictly positive since each consumers utility function is strictly monotone. Therefore, it follows that the

state
(
(xt

i, ϕ
t
i, d

t
i, v

t
i , z

t
i)

m
i=1, (y

t
j , ϕ

t
j , d

t
j , v

t
j , z

t
j)

m+n
j=m+1, p

t, st
)
satisfies (21) and (22). We have that this state

satisfies (9), (14), (21) and (22), so the real states xt
i and ytj are in the bounded attainable sets X̃i and Ỹj

(see the end of section 2).

Since we take t > 0 sufficiently large for the bounded attainable set to be a subset of the interior of

[−t, t]ℓ, all xt
i or ytj are interior points of [−t, t]ℓ. Therefore, the t-equilibrium state

(
(xt

i, ϕ
t
i, d

t
i, v

t
i , z

t
i)

m
i=1,

(ytj , ϕ
t
j , d

t
j , v

t
j , z

t
j)

m+n
j=m+1, p

t, st
)
is not an equilibrium of the original economy E only when (ϕt

i, d
t
i, v

t
i) is

a boundary point of [0, t]λ+λℓ+ℓ for some i = 1, . . . ,m + n. Hence, if (ϕt
i, d

t
i, v

t
i) is bounded for all

i = 1, . . . , n+m, then an equilibrium of the original economy E exists.

Suppose, on the contrary, that (ϕt
i, d

t
i, v

t
i) can not be rearranged (without changing each agent’s max-

imization condition) to be an interior point for some i ∈ {1, . . . , n + m} with respect to valuables of a

certain market, κ, for for all t. This implies that ϕκ′

i → ∞ as t → ∞ for some κ′ since the boundedness

of {‖ϕt
i‖| t > 0} means the boundedness of {‖dti‖| t > 0} and makes {‖vti‖| t > 0} to be bounded. If this

is an exceptional case of (C3), i.e., Lκ′ = {k} and ϕκ
i = vtik for all t, then sκ

′
is a real number in [0, 1] by

(C3) and (22).

Hence, by condition (C2) with equations (8) and (9) (resp., equations (13) and (14)) together with the

free disposal condition for producers (resp., the monotonic preference condition for consumers), they can

realize at least as much as the same profit (resp., the same utility) by decreasing the value of ϕκ′

i as long

as dκ
′t

i > 0. Since this is contradictory to the impossibility of such rearrangements, we have to think that

dκ
′t

i = 0 for all t, and agent i must obtain good k from other market κ′′ 6= κ′ for all t. For such market κ′′,

♯Lκ′′ ≧ 2, non-exceptional situation of (C3) would be applicable. It follows that now we can only consider

the non-exceptional case of (C3). Note that we have the following inequality:

ℓ∑
k=1

( m∑
i=1

(ωik − xt
ik) +

m+n∑
j=m+1

ytj
)
≥

ℓ∑
k=1

(vκ
′t

ik − dκ
′

ik) (45)

for all κ′.11 However, if ϕκ′t
i → ∞ as t → ∞ for some i and κ′, then condition (C3) requires that

11 See equations (22) and (23). In particular, it is sufficient to consider the case
∑m+n

i=1
ϕκ′t
i > 0 since ϕtκ′

i → ∞. Through

the above argument, we can get
∑m

i=1
(ωik − xt

ik) +
∑m+n

j=m+1
ytjk ≧ vκ

′t
ik − dκ

′t
ik for all i = 1, . . . , n+m and all k = 1, . . . , ℓ.

Hence, (29) follows by taking summation side by side.
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∑ℓ
k=1(v

κ′t
ik − dκ

′t
ik ) → ∞ as t → ∞. This contradicts to the fact that xt

i and ytj are bounded.

Appendix C: Proof of Theorem 2

We deal with the pareto optimality when dκi (v
κ
i ) = vκi and homogeneity of ϕκ

i holds for each i in

equilibrium and ∀κ = 1, · · · , λ, ∀k = 1, · · · , ℓ, sκk > 0. These conditions are similar to the following

theorem 1. in Urai et al. (2017).12

Theorem 2. (Optimality): Suppose that there exists an equilibrium such that vκi is in the bounded

domain K mentioned above for each i, (i.e. the above simplification dκi (v
κ
i ) = vκi and ϕκ

i (v
κ
i ) = Σk∈Lκ vκik

holds for each i in equilibrium). Suppose additionally that at equilibrium, for each characteristic k, there

exists a market κ such that sκk > 0, then the equilibrium state is Pareto-optimal.13

(Proof:) Suppose on the contrary that there is an attainable allocation ((x̂i)
m
i=1, (ŷ)

m+n
j=m+1) such that

for all i = 1, · · · ,m, ui(x̂i) ≥ ui(x
∗) and at least one i′, ui′(x̂i′) > ui′(x

∗
i′). Note that we are assuming

here that: (i) dκi (v
κ
i ) = vκi , (ii) ϕκ

i (v
κ
i ) = Σk∈Lκ vκik holds for each i, and (iii) for each characteristic k,

there exists a market κ such that sκk > 0. Then, it can be shown that for any attainable allocations

((x̂i)
m
i=1, (ŷ)

m+n
j=m+1), we can take corresponding quadiples (x̂i, ϕ̂i, d̂i, v̂i, ẑi)

m+n
i=1 ∈ (Ci × Rλ

+) such that for

all i = 1, · · · ,m, (x̂i, ϕ̂i, d̂i, v̂i, ẑi)
m
i=1 ∈ (Xi ×Ci ×Rλ

+) satisfies (16)-(20), and for all j = m+1, · · · ,m+n,

(ŷj , ϕ̂j , d̂j , v̂j , ẑj) ∈ Πm+n
j=m+1(Yj ×Cj ×Rλ

+) satisfies (11)-(14). In fact, the implications of assumptions (i),

(ii), and (iii) are as follows. All unnecessary characteristics can be sold back in the market where they

were acquired, in the quantities guaranteed in (ii). Through this, any characteristic k can be obtained

independently at price pk = pκ in the market κ where it can be obtained, guaranteed by condition sκk > 0

in (iii). This resale process does not involve any resource loss as guaranteed in (i). Moreover, the price

pk of such characteristic k is unique as long as it is defined from the equilibrium price. This is because

if there can be different values, one can arbitrage through the process described above to increase one’s

budget constraint as much as possible. It follows that under the equilibrium price, the budget constraint

for each agent under (16)-(20) or (11)-(14) can be identified with the budget under price system (pk)
ℓ
k=1

for characteristics space Rℓ. Since (x∗
i , ϕ

∗
i , d

∗
i , v

∗
i , z

∗
i )

m
i=1 ∈ (Xi × Ci × Rλ

+) maximizes the utility for all

i = 1, · · · ,m, we have the following statements.

x̂i�i x
∗
i =⇒ p∗(ẑi − ϕ̂i) > Σn

j=1θijπj(p
∗, s∗) (46)

x̂i ≿i x
∗
i =⇒ p∗(ẑi − ϕ̂i) ≥ Σm+n

j=m+1θijπj(p
∗, s∗) (47)

The profit maximization assumption of the equilibrium state implies Σm+n
j=m+1p

∗(ẑj− ϕ̂j) ≥ Σm+n
j=m+1p

∗(z∗i
− ϕ∗

i ). Note that since dκi (v
κ
i ) = vκi ∈ R++Lκ

and ϕκ
i (v

κ
i ) = Σk∈Lκ vκik, the sum of the coordinates of

sκ ∈ RLκ

equals to 1 (κ = 1, · · · , λ, Σk∈Lκsκk = 1). Then Σm
i=1p

∗(ϕ̂i − ẑi) = Σm
i=1Σk∈Lκp∗(v̂ik − ẑks

κ
k)

(16)
=

Σk∈Lκp∗(ωik− x̂ik)
(46),(47)

< Σm+n
j=m+1p

∗(ϕ∗
j −z∗j ) = Σm+n

j=m+1Σk∈Lκp∗(v̂ik− ẑis
κ
k)

(11)
= Σm+n

j=m+1Σk∈Lκp∗ (−ŷjk).

This is a contradiction to the attainability of the allocation ((x̂i)
m
i=1, (ŷj)

m+n
j=m+1).

12 We adopt notations in this paper, not same as Urai et al (2017), but it does not essentially matter.
13 This is because our model do not use the trading upperbounds. For proof, see Theorem 1 of Urai et al. (2017).
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