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Abstract

This study examines how corporate social responsibility (CSR) practices by oligopolistic firms

impact pollution levels in a steady state. I develop a dynamic game model for polluting firms that

adopt CSR. The analysis reveals that a firm’s CSR awareness drives its production strategy to

align with the socially optimal level in both open-loop Nash equilibrium and Markov perfect Nash

equilibrium. Achieving this social optimum is possible if firms are fully committed to CSR. The

study explores two scenarios: excess pollution or underproduction, which depend on the pollutant’s

impact on utility. Notably, when the pollutant’s damage to utility is significant, even a modest

commitment to CSR can effectively reduce excessive pollution. These findings offer valuable insights

for government policy, suggesting that stringent environmental regulations might be less necessary

if firms are attentive to CSR.
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1 Introduction

1.1 Introduction

Corporate Social Responsibility (CSR) is a widely recognized concept where companies consider not

only their profits but also the societal impact of their production activities. This global trend has seen

many major firms engage in various CSR initiatives, such as environmental protection and human capital

investment. The topic has garnered significant attention from economists and has been explored through

both theoretical and empirical analysis.

In theoretical models of CSR, a firm maximizes social welfare including firm profits and consumer

surplus. However, the focus here is specifically on Environmental CSR (ECSR), which examines the

environmental impact of a firm’s production practices when adopting ECSR. Most studies focus on one-

shot or short-term analysis, with few addressing long-term effects. Environmental issues demand more

than short-term solutions because individual economic agents often struggle to collaborate effectively.

Long-term analysis is crucial for ensuring a sustainable environment for future generations. This study

explores how firms implementing ECSR influence their long-term pollution levels. It introduces a payoff

model for firms concerned with ECSR in a dynamic pollution game within an oligopolistic market.

Assuming firms are homogeneous and have equal levels of CSR, each firm observes its pollution stock and

adjusts its output to maximize its payoff. This study compares the social optimum with non-cooperative

outcome to assess the relationship between CSR levels and long-term pollution stock.

I analyze two types of equilibria: the open-loop Nash equilibrium and the Markov perfect Nash

equilibrium, which differ based on how firms use information about pollution level to make decisions. In

the open-loop Nash equilibrium, firms set their strategies based on other firms’ strategies time path, and

these strategies remain consistent throughout. In contrast, in the Markov perfect Nash equilibrium, firms

adjust their strategies based on the current pollution stock and rivals’ strategies. Both equilibria are

time-consistent, meaning firms have no incentive to deviate from their chosen strategies. Additionally,

the Markov perfect Nash equilibrium meets the subgame perfect equilibrium. Given that the outcomes in
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both equilibria are similar in this study, I perform a qualitative analysis of the open-loop Nash equilibrium

and a quantitative analysis of the Markov perfect Nash equilibrium to better understand firms’ actual

actions.

I find that increased awareness of CSR leads firms to adopt production strategies closer to the socially

optimal level in both types of equilibria. The social optimum can be achieved if firms are fully committed

to CSR. I consider two scenarios: excess pollution or underproduction, which depend on the pollutant’s

impact on utility. Notably, a slight increase in CSR is more effective in reducing pollution when the

pollutant’s impact on utility is high. Additionally, even in cases of underproduction and when pollution

levels are below the socially optimal level, a high CSR level enhances social welfare. These findings

suggest that CSR positively impacts the environment, benefiting firms that are attentive to CSR under

various conditions.

1.2 Related literature

This study is closely related to two key areas of research. First, it connects with literature examining

the impact of CSR on firm strategy in oligopolistic and other imperfect markets. Matsumura and Ogawa

(2014) incorporated CSR into an endogenous timing game, demonstrating that CSR does not influence

timing decisions when firm payoffs are symmetric. Wirl (2014) analyzed the strategic dynamics of CSR,

finding that CSR activities are significantly higher in the Markov perfect Nash equilibrium compared

to the cooperative solution and the open-loop Nash equilibrium. Kim et al. (2019) explored CSR and

privatization in a mixed oligopoly, assuming that only private firm adopt CSR and analyzing the optimal

privatization policy.

Second, this study contributes to the literature on differential game models for pollution problems.

Differential games have been used as a valuable tool for dynamic pollution control. Van der Ploeg and

De Zeeuw (1992) and Long (1992) were pioneers in applying differential game models to pollution issues.

Dockner and Long (1993) provided first-best solutions and non-cooperative strategies, while Rubio and
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Casino (2002) assessed the conditions under which Tsutsui and Mino’s (1990) methods were not appli-

cable. Subsequent studies, such as those by Kossioris et al. (2008), Li (2014), and Chen and Li (2023),

have explored various settings. These studies typically address transboundary pollution caused by coun-

tries or regions. In contrast, Benchekroun and Long (1998) focused on optimal tax and subsidy policies

for polluting oligopolists to achieve socially optimal production level, and Benchekroun and Chaudhuri

(2011) examined how taxes can induce stable cartelization in polluting industries. Additionally, the

analysis of CSR and environmental externalities has been addressed in static models by Hirose et al.

(2017, 2020) and Lambertini and Tampieri (2023), as well as in dynamic game models by Lambertini,

Palestini, and Tampieri (2016) and Feichtinger et al. (2016).

The dynamic pollution game in this study builds on the literature concerning polluting oligopolies

and follows the approach of Benchekroun and Chaudhuri (2011). I develop a differential game involving

n firms that are aware of CSR, incorporating the damage caused by pollution. Following Matsumura and

Ogawa (2014), each firm’s payoff is represented as a weighted sum of profit and social welfare, with the

weight reflecting the level of CSR. The study most closely related to this work is Lambertini, Palestini,

and Tampieri (2016). However, this study differs in its approach to incorporating CSR into the model.

Lambertini, Palestini, and Tampieri (2016) use distinct differential parameters for social welfare and

pollution damage and include both a CSR firm and a profit-maximizing firm in their model introducing

firm heterogeneity.

The remainder of this article is organized as follows: Section 2 presents the model and derives the

social optimum solution. Section 3 qualitatively derives and analyzes the open-loop Nash equilibrium.

Section 4 examines the Markov perfect Nash equilibrium through numerical examples. Finally, Section

5 concludes the paper and discusses future research directions.
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2 The model

2.1 Game model

Consider a simple model of polluting oligopolists based on Benchekroun and Long (1998) and Benchekroun

and Chaudhuri (2011). n firms compete in quantity over continuous time t ∈ [0,∞). These firms pro-

duce homogeneous products and implement CSR practices. The inverse demand function is given by

P (Q) = α − βQ, where Q =
∑n

i=1 qi represents the total output and qi is the output of firm i. The

marginal cost is constant at c, with α > c.

Let ei denote each firm’s emissions and S(t) the cumulative amount of pollution. The dynamics of

the pollution stock are as follows:

dS(t)

dt
=

n∑
i=1

ei − δS, (1)

where δ ∈ [0, 1) is the pollution decay rate. Since emissions are linked to production, I set ei = qi. The

assumption is that the damage caused by pollution follows a quadratic form, expressed as γ
2S

2, where γ

is a constant.

Firms aim to maximize the weighted sum of their profits and social welfare. Following Matsumura

and Ogawa (2014), the payoff for firm i is:

Vi = (1− θ)πi + θSW, (2)

where θ ∈ [0, 1), SW represents social welfare, and πi denotes firm i’s profit. The parameter θ reflects

the weight of CSR in each firm’s payoff. Since all firms are homogeneous in this study, the level of CSR

4



is assumed to be constant across all firms. The profit πi and social welfare SW are defined as follows:

πi = P (Q)qi − cqi = (P (Q)− c)qi = (α− βQ− c)qi, (3)

SW =

n∑
i=1

πi + CS − γ

2
S2 = (α− c)Q− β

2
Q2 − γ

2
S2, (4)

where CS =
∫
P (Q)dQ− P (Q)Q = β

2Q
2.

Under these settings, I analyze three types of equilibria: the social optimum, the open-loop Nash

equilibrium, and the Markov perfect Nash equilibrium. In the socially optimal solution, a social planner

determines the total production level that maximizes social surplus, taking into account the damage

caused by pollution. This outcome serves as a benchmark and is compared with the other two equilibria.

2.2 The social optimum

In this subsection, I determine the optimal solution when firms can be directly controlled by a social

planner. The planner selects the time path of total output, Q(t), to maximize social surplus, given by

(4), subject to (1)1 and the initial condition S(0) = S0. To summarize, the social planner’s optimization

problem is:

max
Q≥0

∫ ∞

0

e−ρt

[
(α− c)Q− β

2
Q2 − γ

2
S2

]
dt,

s.t. Ṡ = Q− δS, S(0) = S0 > 0.

The solution to this maximization problem in the steady state can be expressed as

QS =
δ(α− c)(ρ+ δ)

γ + βδ(ρ+ δ)
, (5)

SS =
(α− c)(ρ+ δ)

γ + βδ(ρ+ δ)
. (6)

1A dot represents the time derivative in this study.
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where QS represents the socially optimal total output and SS denotes the socially optimal pollution

stock in the long run. I derive the equilibrium outcome and compare it with the socially optimal solution

as follows.

3 Open-loop

In this section, I determine the open-loop Nash equilibrium of the model. Following Dockner et al.

(2000, p.85), each firm i chooses its time path qi(t) as its strategy to maximize its payoff, considering

the time paths chosen by other firms. An open-loop Nash equilibrium consists of the set of time paths

{q1(t), · · · , qn(t)}∞t=0 where firms commit to their chosen strategies for all future periods.

Firm i adopts the strategies of its rivals Q−i and the initial condition S0 as given, and maximizes (2)

subject to (1) as follows:

max
qi(t)≥0

∫ ∞

0

e−ρt{(1− θ)πi + θSW}dt,

s.t. Ṡ = (qi +Q−i)− δS, S(0) = S0 > 0.

Let λi denote the shadow price of the pollution stock in firm i’s optimal control problem. The Hamiltonian

for this problem is given by:

Hi = (1−θ)(α−c−β(qi+Q−i))qi+θ

[
(α− c)(qi +Q−i)−

β

2
(qi +Q−i)

2 − γ

2
S2

]
+λi(qi+Q−i−δS).

(7)
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The first-order conditions are as follows:

∂Hi

∂qi
= 0 : α− c− β((2− θ)qi +Q−i) + λi = 0

λ̇i = ρλi −
∂Hi

∂λi
: λ̇i = (ρ+ δ)λi + θγS

TVC : lim
t→∞

e−ρtλiS = 0.

I consider the symmetric equilibrium where qi = qj = qo in the steady state. Using these first-order

conditions and (1), each firm’s strategy, total output, and the pollution stock in the open-loop equilibrium

(q0, QO, So) is:

qo =
δ(α− c)(ρ+ δ)

βδ(ρ+ δ)(n+ 1) + θ(γn− βδ(ρ+ δ))
, (8)

Qo = nqo, (9)

So =
nqo

δ
. (10)

Before examining the effect of θ, I first consider the case where firms focus solely on profit maximization

(θ = 0).

Proposition 1. Suppose the firms are profit-seeking, (θ = 0). In this case, it follows that:

Qo ⋛ QSand So ⋛ SS

if and only if

γn ⋛ βδ(ρ+ δ). (11)

■
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Proof. By taking the difference between Qo and QS and using (5), (6), (8)-(10), I obtain:

Qo −QS = δ(So − SS) =
(1− θ)δ(α− c)(ρ+ δ)

[βδ(ρ+ δ)(n+ 1) + θ(γn− βδ(ρ+ δ))][γ + βδ(ρ+ δ)]
(nγ − βδ(ρ+ δ)) ⋛ 0

⇔ nγ ⋛ βδ(ρ+ δ).

■

This proposition outlines the conditions under which overproduction or underproduction occurs in

the open-loop Nash equilibrium when all firms seek profit, relative to the social optimum. Two key

factors determine whether firms overproduce or underproduce. The first factor is the “free rider effect,”

which is commonly used to explain issues related to pollution and resource extraction. In this model, it

corresponds to the case when the number of firms is sufficiently large or the pollutant’s impact on utility

is significant. Conversely, when the number of firms is small, oligopolistic firms intentionally reduce their

production to increase profits, leading to what is known as the “oligopoly effect.” As a result, the total

output in equilibrium is lower than the social optimum. Next, I examine how a firm’s level of CSR affects

overproduction or underproduction. Differentiating qo with respect to θ yields:

∂qo

∂θ
= −(γn− βδ(ρ+ δ))

δ(α− c)(ρ+ δ)

H(θ)2
,
∂2qo

∂θ2
=

2δ(α− c)(ρ+ δ)(γn− βδ(ρ+ δ))2

H(θ)3
≥ 0

where H(θ) ≡ βδ(ρ+ δ)(n+1)+ θ(γn− βδ(ρ+ δ)) > 0. As with Proposition 1, I can consider two cases

under condition (11). When the “free rider effect” dominates the “oligopoly effect,” both total output

and pollution stock, which are proportional to each other, decrease with higher θ. These levels approach

the socially optimal levels at θ = 1. Conversely, when the “oligopoly effect” dominates the “free rider

effect,” total output and pollution stock increase towards the socially optimal levels. Additionally, Qo

and So are convex downward with respect to θ, as illustrated in Figures 1 and 2. Based on these results,

the following proposition can be stated:
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θ

Qo, So

O

QS , SS

1

γn > βδ(ρ+ δ)

Figure 1: Qo and So as a function of θ
for γn > βδ(ρ+ δ).

θ

Qo, So

O

QS , SS

1

γn < βδ(ρ+ δ)

Figure 2: Qo and So as a function of θ
for γn < βδ(ρ+ δ).

Proposition 2. In an open-loop Nash equilibrium,

1. if γn = βδ(ρ + δ) holds, the total output (Qo) and the pollution stock, (So), in the steady state,

correspond to the socially optimal levels (QS , SS) without depending on θ.

2. If γn > βδ(ρ+ δ) holds, Qo ≥ QS and So ≥ SS for any θ ∈ [0, 1]. Qo and So decline as θ increases.

3. If γn < βδ(ρ + δ) holds, Qo ≤ QS and So ≤ SS for any θ ∈ [0, 1]. Qo and So also increase as θ

increases.

Moreover, a socially optimal level can be achieved in the open-loop Nash equilibrium if the firms are

fully committed to CSR (θ = 1). ■

For θ = 1, the results are straightforward. In this scenario, the optimal strategy for each firm aligns

with the social planner’s objectives. Socially optimal outputs can be achieved if all firms in the oligopoly

are fully aware of CSR. However, this assumption is often too stringent for the real economy. Therefore,

examining the case with limited concern for CSR (θ ∈ [0, 1)). The first case of Proposition 2 shows that

unique, noncooperative firms can always achieve a social optimum, regardless of θ. In the second case,

where (γn > βδ(ρ+ δ)), firms overproduce, leading to an increase in pollution stock in the steady state,

as described in Proposition 1. However, as θ increases, both total output and pollution stock in the long

run decrease. This suggests that a stronger concern for CSR improves the pollution problem. In the
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third case, where (γn < βδ(ρ + δ)), firms opt to reduce their output to increase their profits through

oligopoly effects. This reduction in output, coupled with higher market prices, results in an economic

loss. Here, we observe that total output and pollution stock increase with θ, but concern for CSR helps

to mitigate the economic loss.

Finding a situation where firms priorities social welfare over profits may be challenging (i.e., θ > 0.5).

I explore how increasing θ from zero affects a firm’s strategy and pollution stock within an open-loop

Nash equilibrium.

Proposition 3. Increasing firm awareness of CSR can more effectively reduce excess pollution emissions

than it can address economic losses resulting from an oligopoly, provided that the two damage parameters

are sufficiently high.

Proof. See Appendix A. ■

Proposition 3 is a significant result, demonstrating that increased CSR awareness can effectively

reduce excessive pollution. I assumed two cases: γ1, γ2 such that nγ1 > βδ(ρ+ δ) and nγ2 < βδ(ρ+ δ).

By comparing the absolute values of the differential coefficients for each γi around θ = 0, I find that the

absolute value for γ1 is larger than that for γ2 when the sum of the two damage parameters is sufficiently

high (i.e., when the free-rider effect is more dominant). This suggests that if CSR activities are taken into

account, the government may not need to impose stringent pollution emission controls on oligopolistic

markets.

4 Markov perfect Nash equilibrium

I now consider the scenario where firms use Markovian strategies. According to Dockner et al. (2000,

p.86), each firm i observes the current pollution stock and selects a strategy, qi(t) = ϕ(S(t)) to maximize

its payoff, taking into account the Markovian strategies of the other firms, (ϕ1(.), ϕ2(.), · · · , ϕi−1, ϕi+1, · · · , ϕn(.)).

A Markov perfect Nash equilibrium consists of a set of Markovian strategies (ϕ1(.), · · · , ϕn(.)) that sat-
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isfy subgame perfect equilibrium. This type of equilibrium is more realistic than the open-loop Nash

equilibrium because each firm bases its optimal strategy on the observed pollution stock at time t. Al-

though the Markov perfect Nash equilibrium produces outcomes similar to those of the open-loop Nash

equilibrium, it more accurately reflects a firm’s actual actions. However, analyzing the outcome of the

open-loop Nash equilibrium is more straightforward. Therefore, while the previous section provides a

qualitative analysis, I will now conduct a quantitative analysis of the Markov perfect Nash equilibrium.

4.1 Markov perfect Nash equilibrium

Given the rivals’ strategies Q−i =
∑

j ̸=i qj(t) =
∑

j ̸=i ϕj(S(t)), firm i’s optimization problem is:

max
ϕi(S(t))

∫ ∞

0

e−ρt

[
(1− θ)(α− c− β(ϕi +Q−i))ϕi + θ

{
(α− c)(ϕi +Q−i)−

β

2
(ϕi +Q−i)

2 − γ

2
S2

}]
dt,

s.t. Ṡ = ϕi +Q−i − δS.

I assume that firm i’s value function is Wi(S). The Hamilton-Jacobi-Bellman (HJB) equation for i’s

maximization problem at time t is:

ρWi(S) = max
qi(t)≥0

[(1− θ)(α− c− β(qi +Q−i))qi

+ θ

{
(α− c)(qi +Q−i)−

β

2
(qi +Q−i)

2 − γ

2
S2

}
+W ′

i (S)(qi +Q−i − δS)

]
(12)

The first-order condition of this problem is

α− c− β[(2− θ)qi +Q−i] +W ′
i (S) = 0. (13)

Assuming symmetric equilibrium qi = ϕj(S) = qM (S), the firms adopt the following production strategy:

qM (S) =
α− c+W ′

i (S)

β(1− θ + n)
. (14)
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Let W (S) = 1
2ES

2 + FS + G for 0 ≤ S ≤ S̄ ≡ −F+α−c
E where E, F , and G are constants to be

determined2. See Appendix B for the derivation of these constants. By comparing the coefficients of

S and S2, we can determine E, F , and G because I have specified the value function as W (S). In the

Markov perfect Nash equilibrium, the pollution stock path is given by:

S(t) = eηt(S0 − SM ) + SM ,

where SM = − n(F + α− c)

ηβ(1− θ + n)
, and η =

nE

β(1− θ + n)
−δ < 0. Here, SM represents the long-run pollution

stock in the Markov perfect Nash equilibrium.

I can easily verify that the outcomes in the Markov perfect Nash equilibrium when θ = 0, 1 correspond

to those in the open-loop Nash equilibrium. When θ = 0, the dynamic system of pollution stock does

not impact the firm’s optimization problem. Thus, the firm’s optimal control problem simplifies to a

static profit maximization problem. This result aligns with Proposition 1: If the firm is fully concerned

about CSR (θ = 1), then its strategy, total output, and steady-state pollution stock correspond to the

socially optimal levels.

Example 1. For simplicity in analyzing the Markov perfect Nash equilibrium, I specify the following

parameters: α− c = 1, β = 1, δ = 1. With these values, the following results hold:

1. The firm’s equilibrium production strategy decreases (qM ↓) as the harm caused by pollution

damage increases (γ ↑).

2. Suppose pollution damage is sufficiently small(γ ↓). When the pollution stock(S) is relatively low,

the firm’s Markov perfect Nash equilibrium increases (qM ↑) as the firm’s CSR level rises (θ ↑).

Conversely, when the pollution stock(S(t)) is high, the firm’s Markov perfect Nash equilibrium

decreases (qM ↓) as the CSR level increases (θ ↑).

Proof. See Appendix C. ■
2The time script, t, in the value function is omitted due to the assumption of symmetric strategies.
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S

qM

O

↙
qM = AS +B

θ ↑

Figure 3: qM with increasing θ if γ is sufficiently small.

The second item in Example 1 is illustrated in Figure 3.

4.2 Numerical examples

Analyzing the case where θ is between 0 and 1 is challenging due to the complexity of the analytical

solution. Therefore, I use numerical examples to illustrate the effects. One case involves harmful pollution

damage (γ = 3), and the other involves less harmful pollution damage (γ = 0.1). For both examples,

the parameters are set as follows: α = 2, c = 1, β = 1, δ = 1, ρ = 0.1. These parameter values

are consistent with the general literature on polluting oligopolies3. Figure 4 depicts the scenario with

harmful damage, γ = 3, n = 2 and n = 4. In this case, the socially optimal pollution stock level is

SS |γ=3 = 0.2683. Excess pollution occurs in both situations, but it decreases as θ increases. Figure

5 illustrates the scenario with less harmful damage γ = 0.1, n = 2 and n = 4. The socially optimal

pollution stock level is SS |γ=0.1 = 0.9167. This scenario resembles a general oligopoly market problem,

leading to lower production by firms. Consequently, the equilibrium pollution stock is lower than the

socially optimal level, and the difference between these values decreases as θ increases.

To assess how the CSR level impacts pollution and economic losses, I define the deviation rate between

3Benchekroun and Chaudhuri (2011) adopt these parameter values.
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Figure 4: Pollution stock level for γ = 3 Figure 5: Pollution stock level for γ = 0.1

the pollution stock in the Markov perfect Nash equilibrium and the social optimum as: ∆S(θ, γ, n) ≡

|S
M (θ,γ,n)−SS(γ)

SS(γ)
|. The results are shown in Table 1. For n = 2 firms, when the damage is harmful (γ = 3),

the equilibrium pollution stock is approximately 148% higher than the optimal pollution level when firms

are profit-seeking (θ = 0). Increasing the CSR value by 10% results in a reduction of approximately

28% in the deviation. This reduction continues at rates of approximately 22%, 18%, 15%, · · · for each

additional 10% increase in θ. In the case of minimal damage (γ = 0.1), the deviation rate at θ = 0 is about

27%. When θ increases from 0 to 0.1, this rate decreases by approximately 2.1%. However, as θ continues

to increase, the deviation rate rises by approximately 2.2%, 2.3%, · · · , 3.6%. These numerical examples

indicate that improving CSR levels is effective in reducing excess pollution, even when the damage caused

by pollution is relatively severe. Conversely, when pollution damage is minimal, achieving a sufficiently

high CSR level is necessary to address economic losses due to oligopolistic behavior.

θ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
∆S(θ, 3, 2) 1.4848 1.1974 0.9759 0.7964 0.6450 0.5134 0.3959 0.2886 0.1884 0.0929 0
∆S(θ, 3, 4) 1.9818 1.5411 1.2323 0.9952 0.8018 0.6367 0.4908 0.3580 0.2341 0.1157 0
∆S(θ, 0.1, 2) 0.2727 0.2520 0.2302 0.2072 0.1829 0.1571 0.1297 0.1005 0.0693 0.0359 0
∆S(θ, 0.1, 4) 0.1273 0.1156 0.1038 0.0918 0.0795 0.0670 0.0542 0.0412 0.0728 0.0141 0

Table 1: Deviation rate between the pollution stock in the MPNE and that of the social optimum.
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Figure 6: Aggregate social welfare for γ = 3.0, n = 4 Figure 7: Aggregate social welfare for γ = 3.0, n = 2

4.3 Welfare analysis

Given that the damage caused by pollution is sufficiently small, the pollution stock remains below the

socially optimal level for θ ∈ [0, 1) and increases as θ rises. This raises the question: do higher CSR levels

negatively impact social welfare? To address this, I consider a numerical example using the parameter

values outlined in the previous subsection. Using (4) and the parameter values specified in Section 5.2,

the aggregate social welfare is defined as follows:

W ≡
∫ ∞

0

e−ρtSW (t)dt =

∫ ∞

0

e−ρt

{
Q(S, t)− 1

2
Q(S, t)2 − γ

2
S(t)2

}
dt.

Figures 6 and 7 depict the scenario where the damage is harmful γ = 3.0. Figures 8 and 9 illustrate cases

where the damage is minimal γ = 0.1. In both scenarios, a higher θ positively impacts both reduced

pollution and increased aggregate social welfare, regardless of whether the damage is harmful or minimal.
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Figure 8: Aggregate social welfare for γ = 0.1, n = 4 Figure 9: Aggregate social welfare for γ = 0.1, n = 2

5 Concluding remarks

I investigated how CSR impacts a firm’s production strategy and pollution levels in an oligopolistic

market. A firm’s increased awareness of CSR leads its production strategy to align with the socially

optimal level in both the open-loop Nash equilibrium and the Markov perfect Nash equilibrium. Socially

optimal outcomes can be achieved if all firms are fully committed to CSR. I identified two scenarios

where overproduction or underproduction can occur, depending on the number of firms and the impact

of pollution on utility. In both cases, raising CSR levels helps mitigate excessive pollution or economic

loss. Specifically, greater CSR awareness by firms reduces both production and pollution, particularly

when pollution significantly harms utility. This finding has implications for government policy, suggesting

that a high CSR level might eliminate the need for stringent environmental regulations. Moreover, even

in the absence of excessive pollution, a higher CSR level enhances social welfare. Future research should

explore how firms balance CSR awareness with their production strategies. In practice, firms would

adjust their CSR levels as part of their strategic decisions, so modeling a dynamic two-stage game that

includes both CSR level and production decisions would be a valuable direction for future studies.

Appendix

16



A Proof of Proposition 3

Assume values γ1 and γ2 exist such that γ1n > βδ(ρ+ δ) and γ2n < βδ(ρ+ δ). Then, the difference

between the two differential coefficients for γ = γ1, γ2 is given by:

∣∣∣∣ ∂∂θ qo(γ1)
∣∣∣∣− ∣∣∣∣ ∂∂θ qo(γ2)

∣∣∣∣ = δ(α− c)(ρ+ δ)(γ1n− βδ(ρ+ δ))

H2(θ; γ1)
− δ(α− c)(ρ+ δ)(βδ(ρ+ δ)− γ2n)

H2(θ; γ2)

=
δ(α− c)(ρ+ δ)

H2(θ; γ1)H2(θ; γ2)︸ ︷︷ ︸
+

f(θ) (A1)

where f(θ) ≡ [(n(γ1 + γ2)− 2ψ)(n+1)2ψ2 + θ2(γ1n−ψ)(γ2n−ψ)(n(γ1 + γ2)− 2ψ) + 4θ(n+1)ψ(γ1n−

ψ)(γ2n−ψ)] and ψ ≡ βδ(ρ+ δ). From (A1 ), the sign of the difference depends on the sign of f(θ), and

f(0) becomes:

f(0) = (n(γ1 + γ2)− 2ψ)(n+ 1)2ψ2.

When γ1, γ2, and n are sufficiently large, the sign of f(θ) around θ = 0 becomes positive, indicating that

overproduction occurs in this scenario. Consequently, Proposition 3 is upheld.

B Derivation of coefficients

In line with the general literature on differential games of pollution (Dockner et al. (2000); Benchekroun

and Chaudhuri (2011)), each firm’s value function is expressed in a linear quadratic form. The value

function is given by:

W (S) =
1

2
ES2 + FS +G, (A2)
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where E,F and G are constants to be determined. Substituting (14) and (A2 ) into (12) yields the

following equation:

ρ

(
1

2
ES2 + FS +G

)
= (1− θ)(α− c− βnqM )qM + θ

[
(α− c)nqM − β

2
(nqM )2 − γ

2
S2

]
+ (ES + F )(nqM − δS)

=

[
nE2

β(1− θ + n)
− δE − γθ

2
− n(1− θ + nθ/2)E2

β(1− θ + n)2

]
S2

+

[
(α− c)(1− θ + θn) + Fn

β(1− θ + n)
E − 2nE(α− c+ F )(1− θ + nθ/2)

β(1− θ + n)2
+
nE(α− c+ F )

β(1− θ + n)
− δF

]
S

+
(α− c+ F ){(α− c)(1− θ + θn) + Fn}

β(1− θ + n)
− n(1− θ + nθ/2)(α− c+ F )2

β(1− θ + n)2
.

Comparing the coefficients of S and S2 on both sides of the above equations, the constants E,F and G

are given by:

E =
1− θ + n

2n2(2− θ)
[β(2δ + ρ)(1− θ + n)−

√
β2(2δ + ρ)2(1− θ + n)2 + 4n2βγθ(2− θ)] ≤ 0,

F =
(α− c)[(1− θ + n)2 − (1− θ)(2− θ)n]E

β(ρ+ δ)(1− θ + n)2 − n2(2− θ)E
≤ 0,

G =
α− c+ F

βρ(1− θ + n)2

[
(1− θ)2 + nθ(1− θ) +

n2θ

2

]
.

Using E and F , (14) can be rewritten as follows:

qM (S) =
E

β(1− θ + n)
S +

α− c+ F

β(1− θ + n)
= AS +B, (A3)

where

A =
1

2βn2(2− θ)
[β(2δ + ρ)(1− θ + n)−

√
β2(2δ + ρ)2(1− θ + n)2 + 4n2βγθ(2− θ)] ≤ 0,

B =
(α− c)(ρ+ δ)− (α− c)(n− 1)(1− θ)A

β(ρ+ δ)(1− θ + n)− βn2(2− θ)A
> 0.
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C Proof of Lemma 1

For simplicity, some parameters are specified as α− c = 1, β = 1 and δ = 1. Differentiating A and B

with respect to γ yields:

∂A

∂γ
= − θ√

h(θ, γ)
≤ 0,

∂B

∂γ
=

1 + ρ

(β(ρ+ δ)(1− θ + n)− βn2(2− θ)A)2
∂A

∂γ
[n2(2− θ)− (n− 1)(1− θ)(1− θ + n)] ≤ 0.

where h(θ, γ) = (2 + ρ)2(1− θ + n)2 + 4n2γθ(2− θ). Therefore,
∂qM

∂γ
≤ 0 holds. Next, differentiating A

with respect to θ yields:

∂A

∂θ
=

1

2n2(2− θ)2

−(2− θ)

{
2 + ρ+

h′(θ, γ)

2
√
h(θ, γ)

}
+ (2 + ρ)(1− θ + n)−

√
h(θ, γ)︸ ︷︷ ︸

≤ 0

 .
where

2 + ρ+
h′(θ, γ)

2
√
h(θ, γ)

=
1√
h(θ)

(
(2 + ρ)

√
h(θ, γ) +

1

2
h′(θ, γ)

)
=

1√
h(θ, γ)

[(2 + ρ)(
√
h(θ, γ)− (2 + ρ)(1− θ + n)︸ ︷︷ ︸

≥ 0

) + 4n2γ(1− θ)] ≥ 0.

Therefore,
∂A

∂θ
≤ 0 holds. In addition, differentiating B with respect to θ yields:

∂B

∂θ
=

−n(1 + ρ)A− n2(n− 1)A2 −A′(1 + ρ)(n2 + (1− θ)(θn+ 1− θ))

((1 + ρ)(1− θ + n)− n2(2− θ)A)2


≤ 0 if θ and γ are sufficiently large,

≥ 0 otherwise.
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