
Example 1.3: As an example, consider the following func-

tion:

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, for 0 < x < 1,

0, otherwise.

Clearly, since f (x) ≥ 0 for −∞ < x < ∞ and
∫ ∞
−∞ f (x) dx

=
∫ 1

0
f (x) dx = [x]1

0 = 1, the above function can be a proba-

bility density function.

In fact, it is called a uniform distribution.
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Example 1.4: As another example, consider the following

function:

f (x) =
1√
2π

e−
1
2 x2

,

for −∞ < x < ∞.

Clearly, we have f (x) ≥ 0 for all x.

We check whether
∫ ∞
−∞ f (x) dx = 1.

First of all, we define I as I =
∫ ∞
−∞ f (x) dx.

To show I = 1, we may prove I2 = 1 because of f (x) > 0 for

all x, which is shown as follows:
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I2 =
(∫ ∞

−∞
f (x) dx

)2
=
(∫ ∞

−∞
f (x) dx

)(∫ ∞

−∞
f (y) dy

)

=
(∫ ∞

−∞

1√
2π

exp(−1

2
x2) dx

)(∫ ∞

−∞

1√
2π

exp(−1

2
y2) dy

)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp
(
−1

2
(x2 + y2)

)
dx dy

=
1

2π

∫ 2π

0

∫ ∞

0

exp(−1

2
r2)r dr dθ

=
1

2π

∫ 2π

0

∫ ∞

0

exp(−s) ds dθ =
1

2π
2π[− exp(−s)]∞0 = 1.
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Review Integration by Substitution (
):

Univariate (1 ) Case: For a function of x, f (x), we

perform integration by substitution, using x = ψ(y).

Then, it is easy to obtain the following formula:

∫
f (x) dx =

∫
ψ′(y) f (ψ(y)) dy,

which formula is called the integration by substitution.
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Proof:

Let F(x) be the integration of f (x), i.e.,

F(x) =

∫ x

−∞
f (t) dt,

which implies that F′(x) = f (x).

Differentiating F(x) = F(ψ(y)) with respect to y, we have:

f (x) ≡ dF(ψ(y))

dy
=

dF(x)

dx
dx
dy
= f (x)ψ′(y) = f (ψ(y))ψ′(y).
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Bivariate (2 ) Case: For f (x, y), define x = ψ1(u, v)

and y = ψ2(u, v).

∫∫
f (x, y) dx dy =

∫∫
J f (ψ1(u, v), ψ2(u, v)) du dv,

where J is called the Jacobian ( ), which repre-

sents the following determinant ( ):

J =

∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣ =
∂x
∂u
∂y
∂v
− ∂x
∂v
∂y
∂u
.

End of Review
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Go back to the Integration

In the fifth equality, integration by substitution ( ) is

used.

The polar coordinate transformation ( ) is used as

x = r cos θ and y = r sin θ.

Note that 0 ≤ r < +∞ and 0 ≤ θ < 2π.

The Jacobian is given by:

J =

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣ = r.
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In the inner integration of the sixth equality, again, inte-

gration by substitution is utilized, where transformation is

s =
1

2
r2.

Thus, we obtain the result I2 = 1 and accordingly we have

I = 1 because of f (x) ≥ 0.

Therefore, f (x) = e−
1
2 x2

/
√

2π is also taken as a probability

density function.

Actually, this density function is called the standard normal

probability density function ( ).
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Distribution Function: The distribution function (

) or the cumulative distribution function (

), denoted by F(x), is defined as:

P(X ≤ x) = F(x),

which represents the probability less than x.
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The properties of the distribution function F(x) are given by:

F(x1) ≤ F(x2), for x1 < x2, — > nondecreasing function

P(a < X ≤ b) = F(b) − F(a), for a < b,

F(−∞) = 0, F(+∞) = 1.

The difference between the discrete and continuous random

variables is given by:
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1. Discrete random variable (Figure 1):

• F(x) =

r∑
i=1

f (xi) =

r∑
i=1

pi,

where r denotes the integer which satisfies xr ≤ x <

xr+1.

• F(xi) − F(xi − ε) = f (xi) = pi,

where ε is a small positive number less than xi − xi−1.
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2. Continuous random variable (Figure 2):

• F(x) =

∫ x

−∞
f (t) dt,

• F′(x) = f (x).

f (x) and F(x) are displayed in Figure 1 for a discrete random

variable and Figure 2 for a continuous random variable.
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Figure 1: Probability Function f (x) and Distribution Func-

tion F(x)— Discrete Case

X
x1 x2 x3 ............. xr x xr+1 .............

•
•

•
•

•............. .............

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
���

f (xr)

︷�����������������������������������������︸︸�����������������������������������������︷F(x) =
∑r

i=1 f (xi)���

Note that r is the integer which satisfies xr ≤ x < xr+1.
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Figure 2: Density Function f (x) and Distribution Function

F(x) — Continuous Case

x
X

�
��

f (x)

�
�	

F(x) =
∫ x
−∞ f (t)dt
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2.2 Multivariate Random Variable (

) and Distribution

We consider two random variables X and Y in this section. It

is easy to extend to more than two random variables.

Discrete Random Variables: Suppose that discrete ran-

dom variables X and Y take x1, x2, · · · and y1, y2, · · ·, respec-

tively. The probability which event {ω; X(ω) = xi and Y(ω) =
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y j} occurs is given by:

P(X = xi,Y = y j) = fxy(xi, y j),

where fxy(xi, y j) represents the joint probability function

( ) of X and Y . In order for fxy(xi, y j) to be a

joint probability function, fxy(xi, y j) has to satisfies the fol-

lowing properties:

fxy(xi, y j) ≥ 0, i, j = 1, 2, · · ·∑
i

∑
j

fxy(xi, y j) = 1.
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Define fx(xi) and fy(y j) as:

fx(xi) =
∑

j

fxy(xi, y j), i = 1, 2, · · · ,

fy(y j) =
∑

i

fxy(xi, y j), j = 1, 2, · · · .

Then, fx(xi) and fy(y j) are called the marginal probability

functions ( ) of X and Y .

fx(xi) and fy(y j) also have the properties of the probability

functions, i.e.,

fx(xi) ≥ 0 and
∑

i fx(xi) = 1, and fy(y j) ≥ 0 and
∑

j fy(y j) = 1.
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Continuous Random Variables: Consider two continu-

ous random variables X and Y . For a domain D, the prob-

ability which event {ω; (X(ω),Y(ω)) ∈ D} occurs is given

by:

P((X, Y) ∈ D) =

∫∫
D

fxy(x, y) dx dy,

where fxy(x, y) is called the joint probability density func-

tion ( ) of X and Y or the joint density

function of X and Y .
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fxy(x, y) has to satisfy the following properties:

fxy(x, y) ≥ 0,∫ ∞

−∞

∫ ∞

−∞
fxy(x, y) dx dy = 1.

Define fx(x) and fy(y) as:

fx(x) =

∫ ∞

−∞
fxy(x, y) dy, for all x and y,

fy(y) =

∫ ∞

−∞
fxy(x, y) dx,

where fx(x) and fy(y) are called the marginal probability
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density functions ( ) of X and Y or the

marginal density functions ( ) of X and Y .

For example, consider the event {ω; a < X(ω) < b, c <

Y(ω) < d}, which is a specific case of the domain D. Then,

the probability that we have the event {ω; a < X(ω) < b, c <

Y(ω) < d} is written as:

P(a < X < b, c < Y < d) =

∫ b

a

∫ d

c
fxy(x, y) dx dy.
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The mixture of discrete and continuous RVs is also possible.

For example, let X be a discrete RV and Y be a continuous

RV. X takes x1, x2, · · ·. The probability which both X takes

xi and Y takes real numbers within the interval I is given by:

P(X = xi,Y ∈ I) =

∫
I

fxy(xi, y) dy.

Then, we have the following properties:

fxy(xi, y) ≥ 0, for all y and i = 1, 2, · · ·,∑
i

∫ ∞

−∞
fxy(xi, y) dy = 1.
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The marginal probability function of X is given by:

fx(xi) =

∫ ∞

−∞
fxy(xi, y) dy,

for i = 1, 2, · · ·. The marginal probability density function of

Y is:

fy(y) =
∑

i

fxy(xi, y).
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2.3 Conditional Distribution

Discrete Random Variable: The conditional probability

function ( ) of X given Y = y j is represented

as:

P(X = xi|Y = y j) = fx|y(xi|y j) =
fxy(xi, y j)

fy(y j)
=

fxy(xi, y j)∑
i fxy(xi, y j)

.

The second equality indicates the definition of the condi-

tional probability.
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The features of the conditional probability function fx|y(xi|y j)

are:

fx|y(xi|y j) ≥ 0, i = 1, 2, · · · ,∑
i

fx|y(xi|y j) = 1, for any j.
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Continuous Random Variable: The conditional proba-

bility density function ( ) of X given

Y = y (or the conditional density function (

) of X given Y = y) is:

fx|y(x|y) =
fxy(x, y)

fy(y)
=

fxy(x, y)∫ ∞
−∞ fxy(x, y) dx

.
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The properties of the conditional probability density function

fx|y(x|y) are given by:

fx|y(x|y) ≥ 0,∫ ∞

−∞
fx|y(x|y) dx = 1, for any Y = y.
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Independence of Random Variables: For discrete random

variables X and Y , we say that X is independent ( )

(or stochastically independent ( )) of Y if and

only if fxy(xi, y j) = fx(xi) fy(y j).

Similarly, for continuous random variables X and Y , we say

that X is independent of Y if and only if fxy(x, y) = fx(x) fy(y).

When X and Y are stochastically independent, g(X) and h(Y)

are also stochastically independent, where g(X) and h(Y) are

functions of X and Y .
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