Example 1.3:  As an example, consider the following func-

tion:
1, forO<x<1,

fx) =

0, otherwise.

Clearly, since f(x) > 0 for —0 < x < oo and [* f(x)dx
= fol f(x)dx = [x](l) = 1, the above function can be a proba-
bility density function.

In fact, it is called a uniform distribution.
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P= fwﬂx)dxz: ([ s fwf(y)dy
f exp(——xz) dx f
1
f f exp —E(x +y )) dx dy
27

1
= f exp(—Erz)r dr dé

exp(——y ) dy)

27r
1
:— - = —2n[- -] = 1.
27 Jo fo exp(—s) ds do o n[—exp(=s)],
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Proof:

Let F(x) be the integration of f(x), i.e.,

F(x) = fx f(@) dr,

which implies that F’(x) = f(x).
Differentiating F(x) = F(¥/(y)) with respect to y, we have:

dF@G)) _ dF() dx

fx) = dy I

= f' () = fFWONY' ).
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Example 1.4: As another example, consider the following

function:

for —oo < x < o0,

Clearly, we have f(x) > 0 for all x.

We check whether [~ f(x) dx = L.

First of all, we define [ as I = L o:o f(x) dx.

To show I = 1, we may prove I> = 1 because of f(x) > 0 for

all x, which is shown as follows:
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< Review > Integration by Substitution (&2
1B

Univariate (1 Z%) Case: For a function of x, f(x), we
perform integration by substitution, using x = ¥(y).

Then, it is easy to obtain the following formula:

f 09 dx = f VOO dy,

which formula is called the integration by substitution.
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Bivariate (2 Z%§) Case: For f(x,y), define x = ¢ (u, v)
and y = ¢ (u, ).

fff(x,y) dxdy = ffff(l!u(u,v),!l’z(M,V)) du dv,

where J is called the Jacobian (‘¥ 3 E 7 >), which repre-

sents the following determinant (1751=):

ox Ox
J_|ou av|_9xdy Oxoy
|9y | duov dvou
ou Ov
< End of Review >
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< Go back to the Integration >

In the fifth equality, integration by substitution ({&#4f5/57) is
used.

The polar coordinate transformation (FfREAZEZ544) is used as
x =rcosfandy = rsiné.

Note that 0 < r < +o0and 0 < 6 < 27.

The Jacobian is given by:

ox Ox )
- ar a0l cosfd —rsinf i
T“lady dy|~|.. =r
- 2 sinf rcosd
or
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Distribution Function: The distribution function (%%
R840 or the cumulative distribution function (£3&4% 74
#0), denoted by F(x), is defined as:

P(X < x) = F(x),

which represents the probability less than x.
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1. Discrete random variable (Figure 1):

wm—Zﬂm—Zm

where r denotes the 1nteger which satisfies x, < x <

Xrt1-

o F(x;))— F(x;—e€) = f(x) = pi,

where € is a small positive number less than x; — x;_;.
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In the inner integration of the sixth equality, again, inte-

gration by substitution is utilized, where transformation is
1

s = §r2.

Thus, we obtain the result /* = 1 and accordingly we have

I = 1 because of f(x) > 0.

Therefore, f(x) = e~2¥ | \2r is also taken as a probability

density function.

Actually, this density function is called the standard normal

probability density function (FZ2#E 1IE R 53 7).
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The properties of the distribution function F(x) are given by:

F(x;) £ F(x), forx; <x,, — > nondecreasing function

Pla< X <b)=F(b) - F(a), fora<b,

F(-00) =0, F(+o0) = 1.

The difference between the discrete and continuous random

variables is given by:
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2. Continuous random variable (Figure 2):
et = [ foa
* F'(x) = f(x).

f(x) and F(x) are displayed in Figure 1 for a discrete random

variable and Figure 2 for a continuous random variable.
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Figure 1: Probability Function f(x) and Distribution Func-

tion F(x)— Discrete Case

L F) =30, f(x)

Note that r is the integer which satisfies x, < x < x,4;.
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2.2 Multivariate Random Variable (% Z £
#FZ#0) and Distribution
We consider two random variables X and Y in this section. It

is easy to extend to more than two random variables.

Discrete Random Variables: Suppose that discrete ran-
dom variables X and Y take x;, x,,--- and yy,y,, - - -, respec-

tively. The probability which event {w; X(w) = x; and Y(w) =

73

Define f,(x;) and f,(y;) as:
FO) = 3 foliny)s 0= 1,20,
J
KON =D folinyp, =12,

Then, fi(x;) and f,(y;) are called the marginal probability
functions (JEBFEXERIEL) of X and Y.

fx(x;) and f,(y;) also have the properties of the probability
functions, i.e.,

fi(x) =2 0and 3; fi(x;) = 1,and fy(y;) 2 Oand ¥; f,(y;) = 1.
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Figure 2: Density Function f(x) and Distribution Function

F(x) — Continuous Case

F(x)= [7 fndt
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y;} occurs is given by:
PX =x,Y =y)) = fo(xi,y)),

where f,,(x;,y;) represents the joint probability function
(HEETEERBE) of X and Y. In order for f,(x;y;) to be a
joint probability function, fi,(x;,y;) has to satisfies the fol-

lowing properties:

fxy(xi,yj)zo’ i,jZ 192""

DU faluy) = 1.
i
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Continuous Random Variables: Consider two continu-
ous random variables X and Y. For a domain D, the prob-
ability which event {w; (X(w), Y(w)) € D} occurs is given
by:
rxnen) = [[ fo ara
D

where f,,(x,y) is called the joint probability density func-
tion (S FEERZERBH) of X and Y or the joint density

function of X and Y.
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Jfo(x, ) has to satisfy the following properties:

folx,y) 20,

f f So(x,y)dxdy = 1.

Define f,(x) and f,(y) as:

felx) = f Fo(x,y) dy, for all x and y,
f;;()’) = f fxy(x’y) dx,
where fi(x) and f,(y) are called the marginal probability
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The mixture of discrete and continuous RVs is also possible.
For example, let X be a discrete RV and Y be a continuous
RV. X takes xi, x;, ---. The probability which both X takes

x; and Y takes real numbers within the interval  is given by:

PX=x,Yel)= ffxy(x,-,y) dy.
I
Then, we have the following properties:

fo(xi,y) =0, forallyandi=1,2,---
> f Foltiy) dy = 1.
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2.3 Conditional Distribution

Discrete Random Variable: The conditional probability
function (54 {THEER RIS of X given Y = y; is represented

as:

fxy(xh y]) - f;cy(-xia Y;)
fy(yj) Zifxy(xi’)’j).

The second equality indicates the definition of the condi-

PX = x|Y =y)) = fuy(xily)) =

tional probability.
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density functions (JEBHEZRZEREI%) of X and Y or the
marginal density functions (&A% ERI%L) of X and Y.

For example, consider the event {w;a < X(w) < b, ¢ <
Y(w) < d}, which is a specific case of the domain D. Then,
the probability that we have the event {w;a < X(w) < b, ¢ <

Y(w) < d} is written as:

b
P(a<X<b,c<Y<d):ffdfxy(x,y)dxdy.
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The marginal probability function of X is given by:

ﬁ@h]ﬁmmww

fori=1,2,---. The marginal probability density function of
Yis:
A=) Foly).
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The features of the conditional probability function f,(x;ly;)

are:

fx\y(xilyj) > 0’ i= 132"",

fol)'(xi|yj) =1, forany j.
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Continuous Random Variable: The conditional proba-
bility density function (5 {+#ER % EREE) of X given
Y = y (or the conditional density function (544117 R
#) of X given Y = y) is:

fxy(x’y) — fX}(-x9y)
5O [T oy dx

fxly(x ly) =
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Independence of Random Variables: For discrete random
variables X and Y, we say that X is independent (3H31)
(or stochastically independent (FEZ2f4(ZJH3T)) of Y if and

only if fxy(xi’ yj) = fx(xi)f;"()’j)

Similarly, for continuous random variables X and Y, we say

that X is independent of Y if and only if f,,(x,y) = f(x)£,().

When X and Y are stochastically independent, g(X) and h(Y)
are also stochastically independent, where g(X) and h(Y) are

functions of X and Y.
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The properties of the conditional probability density function

Suy(xly) are given by:

fx\y(xly) > Oa
f fay(xly)dx =1, foranyY =y.
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