
8. Theorem: When X1, X2, · · ·, Xn are mutually inde-

pendently and identically distributed and the moment-

generating function of Xi is given by φ(θ) for all i,

the moment-generating function of X is represented by(
φ(
θ

n
)
)n

, where X = (1/n)
∑n

i=1 Xi.
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Proof:

Let φx(θ) be the moment-generating function of X.

φx(θ) = E(eθX) = E(e
θ
n
∑n

i=1 Xi) =

n∏
i=1

E(e
θ
n Xi)

=

n∏
i=1

φ(
θ

n
) =
(
φ(
θ

n
)
)n
.
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Bernoulli Distribution: The probability function of Bernoulli

random variable X is:

f (x) = px(1 − p)1−x, x = 0, 1

The moment-generating function of X is:

φ(θ) = peθ + 1 − p

Mean: E(X) = φ′(0) = p

Variance: V(X) = E(X2)− (E(X))2 = φ′′(0)− p2 = p(1− p)
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Binomial Distribution: For the binomial random variable,

the moment-generating function φ(θ) is known as:

φ(θ) = (peθ + 1 − p)n,

which is discussed in Example 1.5 (Section 3.1). Using the

moment-generating function, we check whether E(X) = np

and V(X) = np(1 − p) are obtained when X is a binomial

random variable.

The first- and the second-derivatives with respect to θ are
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given by:

φ′(θ) = npeθ(peθ + 1 − p)n−1,

φ′′(θ) = npeθ(peθ + 1 − p)n−1 + n(n − 1)p2e2θ(peθ + 1 − p)n−2.

Evaluating at θ = 0, we have:

E(X) = φ′(0) = np, E(X2) = φ′′(0) = np + n(n − 1)p2.

Therefore, V(X) = E(X2) − (E(X))2
= np(1 − p) can be de-

rived. Thus, we can make sure that E(X) and V(X) are ob-

tained from φ(θ).
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Poisson Distribution: The probability function of Poisson

random variable X is:

f (x) = e−λ
λx

x!
, x = 0, 1, 2, · · ·

The moment-generating function of X is:

φ(θ) =

∞∑
x=0

eθxe−λ
λx

x!

=

∞∑
x=0

e−λeeθλe−eθλ (eθλ)x

x!

= exp(λ(eθ − 1))

192



Normal Distribution: When X ∼ N(μ, σ2), the moment-

generating function of X is given by: φ(θ) = exp(μθ+ 1
2
σ2θ2)

from the previous example.

Obtain E(X) and V(X), using φ(θ).

• E(X) = φ′(0) = μ

from φ′(θ) = (μ + σ2θ) exp(μθ + 1
2
σ2θ2).

• E(X2) = φ′′(0) = σ2 + μ2

from φ′′(θ) = σ2 exp(μθ+ 1
2
σ2θ2)+(μ+σ2θ)2 exp(μθ+ 1

2
σ2θ2).

• V(X) = E(X2) − (E(X))2 = (σ2 + μ2) − μ2 = σ2
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Cauchy Distribution: Cauchy distribution: f (x) =
1

π(1 + x2)
for −∞ < x < ∞.

E(X) =

∫
x f (x)dx =

∫
x

π(1 + x2)
dx

=
1

2π
[log(1 + x2)]∞−∞

=⇒ φ(θ) does not exists.

t(k) distrubution =⇒ E(Xk) does not exists.
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Uniform Distribution: The density function is:

f (x) =
1

b − a
, a < x < b

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx =

∫ b

a
eθx

1

b − a
dx

=

[
eθx

θ(b − a)

]b
a
=

eθb − eθa

θ(b − a)
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φ′(θ) =
θ(beθb − aeθa) − (eθb − eθa)

θ2(b − a)
Mean:

E(X) = φ′(0) ←− Use L’Hospital’s rule.

=
a + b

2

(*) f (θ) = θ(beθb − aeθa) − (eθb − eθa), g(θ) = θ2(b − a)

f ′(θ) = θ(b2eθb − a2eθa), g′(θ) = 2θ(b − a)

lim
θ→0

f (θ)

g(θ)
= lim
θ→0

f ′(θ)
g′(θ)

= lim
θ→0

θ(b2eθb − a2eθa)

2θ(b − a)
=

a + b
2
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(*) L’Hospital’s rule

For two continuous functions f (x) and g(x),

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
, or lim

x→0

f (x)

g(x)
= lim

x→0

f ′(x)

g′(x)
,

L’Hospital’s rule is used when we have:

lim
x→∞

f (x)

g(x)
=
∞
∞ or

0

0
,

or

lim
x→0

f (x)

g(x)
=
∞
∞ or

0

0
.
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Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0)

=
θ2(b2eθb − a2eθa) − 2θ(beθb − aeθa) + 2(eθb − eθa)

θ3(b − a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (θ) = θ2(b2eθb − a2eθa) − 2θ(beθb − aeθa) + 2(eθb − eθa)

g(θ) = θ3(b − a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ′(θ) = θ2(b3eθb − a3eθa)

g′(θ) = 3θ2(b − a)
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φ′′(0) = lim
θ→0

f (θ)

g(θ)
= lim
θ→0

f ′(θ)
g′(θ)

= lim
θ→0

θ2(b3eθb − a3eθa)

3θ2(b − a)
=

b2 + ba + a2

3

V(X) = E(X2) − (E(X))2

= φ′′(0) − (φ′(0))2 ←− L’Hospital’s rule

=
b2 + ba + a2

3
−
(a + b

2

)2
=

(b − a)2

12

199

Exponential Distribution: The exponential distribution is:

f (x) = λe−λx, 0 < x

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx =

∫ ∞

0

eθxλe−λxdx

=
λ

λ − θ
∫ ∞

0

(λ − θ)e−(λ−θ)xdx =
λ

λ − θ
Use the exponential distribution with parameter λ − θ in the

integration.

200

1. Mean: E(X) = φ′(0)

φ′(θ) =
λ

(λ − θ)2

E(X) = φ′(0) =
1

λ

2. Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0) φ′′(θ) = 2
λ

(λ − θ)3

V(X) = E(X2) − (E(X))2
= φ′′(0) − (φ′(0))2

=
2

λ2
− 1

λ2
=

1

λ2
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χ2 Distribution: The density function is:

f (x) =
1

2
n
2Γ(n

2
)
x

n
2−1 exp(− x

2
), 0 < x

The moment-generating function is:

φ(θ) =

∫ ∞

−∞
eθx f (x)dx

=

∫ ∞

0

eθx
1

2
n
2Γ( n

2
)
x

n
2−1 exp(− x

2
)dx

=

∫ ∞

0

1

2
n
2Γ(n

2
)
x

n
2−1 exp

(
−1

2
(1 − 2θ)x

)
dx

=

∫ ∞

0

1

2
n
2Γ(n

2
)

( y
1 − 2θ

) n
2−1

exp(−1

2
y)

1

1 − 2θ
dy
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=

(
1

1 − 2θ

) n
2
∫ ∞

0

1

2
n
2Γ( n

2
)
y

n
2−1 exp(−1

2
y)dy

=
( 1

1 − 2θ

) n
2

Use integration by substitution by y = (1 − 2θ)x
dx
dy
= (1 − 2θ)−1

Use the χ2(n) distribution in the integration.
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1. Mean: E(X) = φ′(0)

φ′(θ) = (− n
2
)(−2)(1 − 2θ)−

n
2−1

E(X) = φ′(0) = n

2. Variance: V(X) = E(X2) − (E(X))2

E(X2) = φ′′(0)

φ′′(θ) = (− n
2
)(−n

2
− 1)(−2)2(1 − 2θ)−

n
2−1

V(X) = E(X2) − (E(X))2
= φ′′(0) − (φ′(0))2

= n(n + 2) − n2 = 2n
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Sum of Bernoulli Random Variables: X1, X2, · · ·, Xn are

mutually independently and identically distributed as Bernoulli

random variable with parameter p.

Then, the probability function of Y = X1 + X2 + · · · + Xn is

B(n, p).

Proof: The moment-generating function of Xi, φi(θ), is:

φi(θ) = peθ + 1 − p
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The moment-generating function of Y , φy(θ), is:

φy(θ) = E(eθY) = E(eθ(X1+X2+···+Xn))

= E(eθX1)E(eθX2) · · ·E(eθXn) = φ1(θ)φ2(θ) · · · φn(θ)

=
(
φ(θ)
)n
= (peθ + 1 − p)n,

which is the moment-generating function of B(n, p).

Note:

In the third equality, X1, X2, · · ·, Xn are mutually independent.

In the fifth equality, X1, X2, · · ·, Xn are identically distributed.
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Sum of Two Normal Random Variables: X ∼ N(μ1, σ
2
1)

and Y ∼ N(μ2, σ
2
2). X is independent of Y .

Then, aX + bY ∼ N(aμ1 + bμ2, a2σ2
1 + b2σ2

2), where a are b

are constant.

Proof: Suppose tha the moment-generating functions of X

and Y are given by φx(θ) and φy(θ).

φx(θ) = exp
(
μ1θ +

1

2
σ2

1θ
2
)

φy(θ) = exp
(
μ2θ +

1

2
σ2

2θ
2
)
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The moment-generating function of W = aX + bY is:

φw(θ) = E(eθW) = E(eθ(aX+bY)) = E(eaθX)E(ebθY) = φx(aθ)φy(bθ)

= exp
(
μ1(aθ) +

1

2
σ2

1(aθ)2
)
× exp

(
μ2(bθ) +

1

2
σ2

2(bθ)2
)

= exp
(
(aμ1 + bμ2)θ +

1

2
(a2σ2

1 + b2σ2
2)θ2
)

which is the moment-generating function of normal distribu-

tion with mean aμ1 + bμ2 and variance a2σ2 + b2σ2
2.

Therefore, aX + bY ∼ N(aμ1 + bμ2, a2σ2 + b2σ2
2)
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Sum of Two χ2 Random Variables: X ∼ χ2(n) and Y ∼
χ2(m). X is independent of Y .

Then, Z = X + Y ∼ χ2(n + m)

Proof:

Let φx(θ) and φy(θ) be the moment-generating functions of X

and Y .

φx(θ) and φy(θ) are given by:

φx(θ) =
( 1

1 − 2θ

) n
2
, φy(θ) =

( 1

1 − 2θ

)m
2
.
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The moment-generating function of Z = X + Y is:

φz(θ) ≡ E(eθZ) = E(eθ(X+Y)) = E(eθX)E(eθY) = φx(θ)φy(θ)

=
( 1

1 − 2θ

) n
2
( 1

1 − 2θ

)m
2
=
( 1

1 − 2θ

) n+m
2

which is the moment-generating function of χ2(n+m) distri-

bution. Therefore, Z ∼ χ2(n + m).

Note:

In the third equality, X and Y are independent.
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5.2 Multivariate Cases

Bivariate Case: As discussed in Section 3.2, for two ran-

dom variables X and Y , the moment-generating function is

defined as φ(θ1, θ2) = E(eθ1X+θ2Y). Some useful and impor-

tant theorems and remarks are shown as follows.

211

1. Theorem: Consider two random variables X and Y .

Let φ(θ1, θ2) be the moment-generating function of X

and Y . Then, we have the following result:

∂ j+kφ(0, 0)

∂θ
j
1
∂θk

2

= E(X jYk).

Proof:

Let fxy(x, y) be the probability density function of X

and Y . From the definition, φ(θ1, θ2) is written as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞
eθ1 x+θ2y fxy(x, y) dx dy.
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Taking the jth derivative of φ(θ1, θ2) with respect to θ1

and at the same time the kth derivative with respect to

θ2, we have the following expression:

∂ j+kφ(θ1, θ2)

∂θ
j
1
∂θk

2

=

∫ ∞

−∞

∫ ∞

−∞
x jykeθ1 x+θ2y fxy(x, y) dx dy.

Evaluating the above equation at (θ1, θ2) = (0, 0), we

can easily obtain:

∂ j+kφ(0, 0)

∂θ
j
1
∂θk

2

=

∫ ∞

−∞

∫ ∞

−∞
x jyk fxy(x, y) dx dy ≡ E(X jYk).
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2. Remark: Let (Xi, Yi) be a pair of random variables.

Suppose that the moment-generating function of (X1,Y1)

is equivalent to that of (X2,Y2). Then, (X1,Y1) has the

same distribution function as (X2,Y2).
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