

3. **Theorem:** Let $\phi(\theta_1, \theta_2)$ be the moment-generating function of (X, Y) .

The moment-generating function of X is given by $\phi_1(\theta_1)$ and that of Y is $\phi_2(\theta_2)$.

Then, we have the following facts:

$$\phi_1(\theta_1) = \phi(\theta_1, 0), \quad \phi_2(\theta_2) = \phi(0, \theta_2).$$

215

Proof:

Again, the definition of the moment-generating function of X and Y is represented as:

$$\phi(\theta_1, \theta_2) = E(e^{\theta_1 X + \theta_2 Y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\theta_1 x + \theta_2 y} f_{xy}(x, y) dx dy.$$

When $\phi(\theta_1, \theta_2)$ is evaluated at $\theta_2 = 0$, $\phi(\theta_1, 0)$ is rewritten as follows:

$$\begin{aligned} \phi(\theta_1, 0) &= E(e^{\theta_1 X}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\theta_1 x} f_{xy}(x, y) dx dy \\ &= \int_{-\infty}^{\infty} e^{\theta_1 x} \left(\int_{-\infty}^{\infty} f_{xy}(x, y) dy \right) dx \end{aligned}$$

216

$$= \int_{-\infty}^{\infty} e^{\theta_1 x} f_x(x) dx = E(e^{\theta_1 X}) = \phi_1(\theta_1).$$

Thus, we obtain the result: $\phi(\theta_1, 0) = \phi_1(\theta_1)$.

Similarly, $\phi(0, \theta_2) = \phi_2(\theta_2)$ can be derived.

217

4. **Theorem:** The moment-generating function of (X, Y) is given by $\phi(\theta_1, \theta_2)$.

Let $\phi_1(\theta_1)$ and $\phi_2(\theta_2)$ be the moment-generating functions of X and Y , respectively.

If X is independent of Y , we have:

$$\phi(\theta_1, \theta_2) = \phi_1(\theta_1)\phi_2(\theta_2).$$

218

Proof:

From the definition of $\phi(\theta_1, \theta_2)$, the moment-generating function of X and Y is rewritten as follows:

$$\phi(\theta_1, \theta_2) = E(e^{\theta_1 X + \theta_2 Y}) = E(e^{\theta_1 X})E(e^{\theta_2 Y}) = \phi_1(\theta_1)\phi_2(\theta_2).$$

The second equality holds because X is independent of Y .

219

Multivariate Case: For multivariate random variables X_1, X_2, \dots, X_n , the moment-generating function is defined as:

$$\phi(\theta_1, \theta_2, \dots, \theta_n) = E(e^{\theta_1 X_1 + \theta_2 X_2 + \dots + \theta_n X_n}).$$

220

1. **Theorem:** If the multivariate random variables X_1, X_2, \dots, X_n are mutually independent, the moment-generating function of X_1, X_2, \dots, X_n , denoted by $\phi(\theta_1, \theta_2, \dots, \theta_n)$, is given by:

$$\phi(\theta_1, \theta_2, \dots, \theta_n) = \phi_1(\theta_1)\phi_2(\theta_2) \cdots \phi_n(\theta_n),$$

where $\phi_i(\theta) = E(e^{\theta X_i})$.

221

Proof:

From the definition of the moment-generating function in the multivariate cases, we obtain the following:

$$\begin{aligned}\phi(\theta_1, \theta_2, \dots, \theta_n) &= E(e^{\theta_1 X_1 + \theta_2 X_2 + \cdots + \theta_n X_n}) \\ &= E(e^{\theta_1 X_1})E(e^{\theta_2 X_2}) \cdots E(e^{\theta_n X_n}) \\ &= \phi_1(\theta_1)\phi_2(\theta_2) \cdots \phi_n(\theta_n).\end{aligned}$$

222

2. **Theorem:** Suppose that the multivariate random variables X_1, X_2, \dots, X_n are mutually independently and identically distributed.

Suppose that $X_i \sim N(\mu, \sigma^2)$.

Let us define $\hat{\mu} = \sum_{i=1}^n a_i X_i$, where $a_i, i = 1, 2, \dots, n$, are assumed to be known.

Then, $\hat{\mu} \sim N(\mu \sum_{i=1}^n a_i, \sigma^2 \sum_{i=1}^n a_i^2)$.

223

Proof:

From Example 1.8 (p.111) and Example 1.9 (p.147), it is shown that the moment-generating function of X is given by: $\phi_x(\theta) = \exp(\mu\theta + \frac{1}{2}\sigma^2\theta^2)$, when X is normally distributed as $X \sim N(\mu, \sigma^2)$.

224

Let $\phi_{\hat{\mu}}$ be the moment-generating function of $\hat{\mu}$.

$$\begin{aligned}\phi_{\hat{\mu}}(\theta) &= E(e^{\theta \hat{\mu}}) = E(e^{\theta \sum_{i=1}^n a_i X_i}) = \prod_{i=1}^n E(e^{\theta a_i X_i}) \\ &= \prod_{i=1}^n \phi_x(a_i \theta) = \prod_{i=1}^n \exp(\mu a_i \theta + \frac{1}{2} \sigma^2 a_i^2 \theta^2) \\ &= \exp\left(\mu \sum_{i=1}^n a_i \theta + \frac{1}{2} \sigma^2 \sum_{i=1}^n a_i^2 \theta^2\right)\end{aligned}$$

which is equivalent to the moment-generating function of the normal distribution with mean $\mu \sum_{i=1}^n a_i$ and variance $\sigma^2 \sum_{i=1}^n a_i^2$, where μ and σ^2 in $\phi_x(\theta)$ is simply

replaced by $\mu \sum_{i=1}^n a_i$ and $\sigma^2 \sum_{i=1}^n a_i^2$ in $\phi_{\hat{\mu}}(\theta)$, respectively.

Moreover, note as follows.

When $a_i = 1/n$ is taken for all $i = 1, 2, \dots, n$, i.e., when $\hat{\mu} = \bar{X}$ is taken, $\hat{\mu} = \bar{X}$ is normally distributed as: $\bar{X} \sim N(\mu, \sigma^2/n)$.

225

226

6 Law of Large Numbers (対数の法則) and Central Limit Theorem (中心極限定理)

6.1 Chebyshev's Inequality (チェビシェフの不等式)

227

Theorem: Let $g(X)$ be a nonnegative function of the random variable X , i.e., $g(X) \geq 0$.

If $E(g(X))$ exists, then we have:

$$P(g(X) \geq k) \leq \frac{E(g(X))}{k}, \quad (6)$$

for a positive constant value k .

228

$$P(U = 0) = P(g(X) < k).$$

Then, in spite of the value which U takes, the following equation always holds:

$$g(X) \geq kU,$$

which implies that we have $g(X) \geq k$ when $U = 1$ and $g(X) \geq 0$ when $U = 0$, where k is a positive constant value.

Therefore, taking the expectation on both sides, we obtain:

$$E(g(X)) \geq kE(U), \quad (7)$$

229

230

Suppose that the probability function of U is given by:

$$f(u) = P(U = u),$$

where $P(U = u)$ is represented as:

$$P(U = 1) = P(g(X) \geq k),$$

where $E(U)$ is given by:

$$\begin{aligned} E(U) &= \sum_{u=0}^1 uP(U = u) = 1 \times P(U = 1) + 0 \times P(U = 0) \\ &= P(U = 1) = P(g(X) \geq k). \end{aligned} \quad (8)$$

Accordingly, substituting equation (8) into equation (7), we have the following inequality:

$$P(g(X) \geq k) \leq \frac{E(g(X))}{k}.$$

231

Chebyshev's Inequality: Assume that $E(X) = \mu$, $V(X) = \sigma^2$, and λ is a positive constant value. Then, we have the following inequality:

$$P(|X - \mu| \geq \lambda\sigma) \leq \frac{1}{\lambda^2},$$

or equivalently,

$$P(|X - \mu| < \lambda\sigma) \geq 1 - \frac{1}{\lambda^2},$$

which is called **Chebyshev's inequality**.

232

Proof:

Take $g(X) = (X - \mu)^2$ and $k = \lambda^2\sigma^2$. Then, we have:

$$P((X - \mu)^2 \geq \lambda^2\sigma^2) \leq \frac{E(X - \mu)^2}{\lambda^2\sigma^2},$$

which implies $P(|X - \mu| \geq \lambda\sigma) \leq \frac{1}{\lambda^2}$.

Note that $E(X - \mu)^2 = V(X) = \sigma^2$.

Since we have $P(|X - \mu| \geq \lambda\sigma) + P(|X - \mu| < \lambda\sigma) = 1$, we can derive the following inequality:

$$P(|X - \mu| < \lambda\sigma) \geq 1 - \frac{1}{\lambda^2}. \quad (9)$$

233

An Interpretation of Chebyshev's inequality: $1/\lambda^2$ is an upper bound for the probability $P(|X - \mu| \geq \lambda\sigma)$.

Equation (9) is rewritten as:

$$P(\mu - \lambda\sigma < X < \mu + \lambda\sigma) \geq 1 - \frac{1}{\lambda^2}.$$

That is, the probability that X falls within $\lambda\sigma$ units of μ is greater than or equal to $1 - 1/\lambda^2$.

Taking an example of $\lambda = 2$, the probability that X falls within two standard deviations of its mean is at least 0.75.

234

Furthermore, note as follows.

Taking $\epsilon = \lambda\sigma$, we obtain as follows:

$$P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2},$$

i.e.,

$$P(|X - E(X)| \geq \epsilon) \leq \frac{V(X)}{\epsilon^2}, \quad (10)$$

which inequality is used in the next section.

Remark: Equation (10) can be derived when we take $g(X) = (X - \mu)^2$, $\mu = E(X)$ and $k = \epsilon^2$ in equation (6).

Even when we have $\mu \neq E(X)$, the following inequality still hold:

$$P(|X - \mu| \geq \epsilon) \leq \frac{E((X - \mu)^2)}{\epsilon^2}.$$

Note that $E((X - \mu)^2)$ represents the mean square error (MSE).

When $\mu = E(X)$, the mean square error reduces to the variance.

235

236

6.2 Law of Large Numbers (対数の法則) and Convergence in Probability (確率収束)

Law of Large Numbers 1: Assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean $E(X_i) = \mu$ for all i .

Suppose that the moment-generating function of X_i is finite.

Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Then, $\bar{X}_n \rightarrow \mu$ as $n \rightarrow \infty$.

Proof: The moment-generating function is written as:

$$\begin{aligned} \phi(\theta) &= 1 + \mu'_1\theta + \frac{1}{2!}\mu'_2\theta^2 + \frac{1}{3!}\mu'_3\theta^3 + \dots \\ &= 1 + \mu'_1\theta + O(\theta^2) \end{aligned}$$

where $\mu'_k = E(X^k)$ for all k . That is, all the moments exist.

$$\begin{aligned} \phi_x(\theta) &= \left(\phi\left(\frac{\theta}{n}\right)\right)^n = \left(1 + \mu'_1\frac{\theta}{n} + O\left(\frac{\theta^2}{n^2}\right)\right)^n \\ &= \left(1 + \mu'_1\frac{\theta}{n} + O\left(\frac{1}{n^2}\right)\right)^n = \left((1 + x)^{\frac{1}{x}}\right)^{\mu\theta + O(n^{-1})} \\ &\rightarrow \exp(\mu\theta) \quad \text{as } x \rightarrow 0, \end{aligned}$$

237

238

which is the following probability function:

$$f(x) = \begin{cases} 1 & \text{if } x = \mu, \\ 0 & \text{otherwise.} \end{cases}$$

$$\phi(\theta) = \sum e^{\theta x} f(x) = e^{\theta \mu} f(\mu) = e^{\theta \mu}$$

Law of Large Numbers 2: Assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for all i . Then, for any positive value ϵ , as $n \rightarrow \infty$, we have the following result:

$$P(|\bar{X}_n - \mu| > \epsilon) \rightarrow 0,$$

$$\text{where } \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

We say that \bar{X}_n converges in probability to μ .

239

240