. Theorem: Let ¢(6,,6,) be the moment-generating

function of (X, Y).

The moment-generating function of X is given by ¢;(6,)

and that of Y is ¢,(6,).

Then, we have the following facts:

$1(01) = ¢(01,0),  ¢2(02) = ¢(0,6,).

215

= fm M fu(x) dx = E(e") = ¢1(6)).

0o

Thus, we obtain the result: ¢(6;,0) = ¢(6,).

Similarly, ¢(0, 6,) = ¢,(8,) can be derived.
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Proof:

From the definition of ¢(8;, 6,), the moment-generating

function of X and Y is rewritten as follows:
$(61,0,) = E("%) = E(")E(e™") = 61(61)¢2(62).

The second equality holds because X is independent of

Y.
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Proof:

Again, the definition of the moment-generating func-

tion of X and Y is represented as:

#(61,6,) = (XY = f f M (x,y) dax dy.

When ¢(6,, 6,) is evaluated at 8, = 0, ¢(6;, 0) is rewrit-

ten as follows:

6(6,,0) = E(") = f ) f " () dx dy

= I“’ eHIX(IDO fo(x,y) dy) dx

216

. Theorem: The moment-generating function of (X, Y)

is given by ¢(6y, 6,).

Let ¢1(0;) and ¢,(6,) be the moment-generating func-

tions of X and Y, respectively.

If X is independent of Y, we have:

061, 6,) = ¢1(01)p2(6,).
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Multivariate Case:  For multivariate random variables X},

X5, -+, X,,, the moment-generating function is defined as:

B(01. 62, 0;) = (N0
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1. Theorem: If the multivariate random variables X,

X5, -+, X, are mutually independent,

the moment-generating function of X, X5, - - -, X, de-

noted by ¢(6, 65, - - -, 8,), is given by:

$(01,05,++,6,) = $1(0))$2(62) - - - ,(6,),

where ¢;(6) = E(e™).
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. Theorem: Suppose that the multivariate random vari-
ables X, X5, -+, X,, are mutually independently and

identically distributed.
Suppose that X; ~ N(u, o7?).

Let us define 1 = }7", a;X;, where a;, i = 1,2,---,n,

are assumed to be known.

Then, o ~ N(u YL, a;, 0% Y, a?).
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Let ¢, be the moment-generating function of fi.

03(60) = E(e") = E(e" 5 %) = [ | B
i=1

n

2 1
= E[ o(af) = ]_[ exp(ua;0 + Eazafe)z)

i=1
n

= exp(u an a6 + %0'2 Z a’6®)
i=1

i=1
which is equivalent to the moment-generating func-
tion of the normal distribution with mean x )" | a; and

variance o2 Y| a?, where p and o in ¢,(6) is simply
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Proof:

From the definition of the moment-generating function

in the multivariate cases, we obtain the following:

¢(9| 62 . 9’1) — E(69|X1+92X2+---+9,,X”)
— E(€91X1 )E(692X2) .. E(eHan)

= $1(61)¢2(6,) - - - ¢n(9n)-
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Proof:

From Example 1.8 (p.111) and Example 1.9 (p.147), it
is shown that the moment-generating function of X is
given by: ¢,(6) = exp(uf+306%), when X is normally
distributed as X ~ N(u, 0>).
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replaced by u Y a; and o> YL a7 in ¢u(6), respec-

tively.
Moreover, note as follows.

When a; = 1/n is taken for all i = 1,2,---,n, ie.,
when /i = X is taken, 1 = X is normally distributed as:

X ~ N(u, 0% /n).
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6 Law of Large Numbers (xt#®D ;%
Bll) and Central Limit Theorem (&
I8 R 7E )

6.1 Chebyshev’s Inequality (FTE> T 7 DA
F)
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Proof:
We define the discrete random variable U as follows:
1, ifgX) >k,
U= 8(Xx)
0, ifgX)<k.
Thus, the discrete random variable U takes O or 1.

Suppose that the probability function of U is given by:
fu) = P(U = u),
where P(U = u) is represented as:
P(U =1) = P(g(X) > k),
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where E(U) is given by:

1
E(U)= Y uP(U =u)=1xPU =1)+0x PU = 0)
u=0

=PU =1) = P(g(X) > k). 3)

Accordingly, substituting equation (8) into equation (7), we

have the following inequality:

P(g(X)2 k) < %X))'
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Theorem: Let g(X) be a nonnegative function of the ran-
dom variable X, i.e., g(X) > 0.
If E(g(X)) exists, then we have:

E(g(X))

PeX) 2 k) < — —,

(6)

for a positive constant value k.

228

PU =0) = P(g(X) <k).

Then, in spite of the value which U takes, the following

equation always holds:
8(X) = kU,

which implies that we have g(X) > k when U = 1 and g(X) >
0 when U = 0, where k is a positive constant value.

Therefore, taking the expectation on both sides, we obtain:
E(g(X)) = kE(U), )
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Chebyshev’s Inequality: Assume that E(X) = u, V(X) =
o2, and Ais a positive constant value. Then, we have the

following inequality:
1
P(X —pl 2 40) < —,
or equivalently,
1
P(X —u| < A0) > I_F’

which is called Chebyshev’s inequality.
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Proof:
Take g(X) = (X — p)? and k = 220>, Then, we have:
E(X — )
PX - > B0?) < =,

1
which implies P(|X — u| > 10) < FrR
Note that E(X — u)? = V(X) = 0.
Since we have P(|1X — u| = Ao) + P(X —u| < do) = 1, we

can derive the following inequality:

1
POX —pl < o) 2 1= —. 9)
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Furthermore, note as follows.

Taking € = Ao, we obtain as follows:

2
o
P(IX —pul =z € < =

i.e.,
V(X)

P(X -EX)| > €) < —
€

) (10)

which inequality is used in the next section.
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6.2 Law of Large Numbers (x#{®;%8l) and
Convergence in Probability (=X R)

Law of Large Numbers 1: Assume that X, X5, -+, X,
are mutually independently and identically distributed with
mean E(X;) = u for all i.

Supopose that the moment-generating function of X; is finite.

— 1<
Define X,, = — E X;.
n
i=1

Then, )_(,1 — pasn — oo.
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An Interpretation of Chebyshev’s inequality: 1/ is an
upper bound for the probability P(|X — u| > 10).

Equation (9) is rewritten as:
1
P(y—/lo-<X</1+/lcr)21—ﬁ.

That is, the probability that X falls within Ao units of u is
greater than or equal to 1 — 1/42.
Taking an example of 1 = 2, the probability that X falls

within two standard deviations of its mean is at least 0.75.
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Remark: Equation (10) can be derived when we take g(X) =
(X — )%, u = E(X) and k = €* in equation (6).
Even when we have u # E(X), the following inequality still

hold:
E((X - %)
€2 '

P(X —pul 2 e) <

Note that E((X—u)?) represents the mean square error (MSE).
When p = E(X), the mean square error reduces to the vari-

ance.
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Proof: The moment-generating function is written as:

1

1
(0) = 1+ 0+ Syt + =

2!
=1+ 0+ 0@

#3934. o

where ;= E(X¥) for all k. That is, all the moments exist.

50 = (o)) =
=(1 +p;g + 0(%))" = (1 +x)7)

— exp(uf) asx— 0,

2
(1445 + 0Co)

10+0(n~")
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which is the following probability function:

f(x):{l ifx =g,

0 otherwise.

9(0) = )" f(x) = M f() = e
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Law of Large Numbers 2: Assume that X, X5, ---, X,
are mutually independently and identically distributed with
mean E(X;) = u and variance V(X;) = 0> < oo for all i.

Then, for any positive value €, as n — oo, we have the

following result:
P(X, —ul >¢€) — 0,

_ 1 <&
where X, = — X;.

We say that X, converges in probability to .
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