
3. Theorem: Let φ(θ1, θ2) be the moment-generating

function of (X,Y).

The moment-generating function of X is given by φ1(θ1)

and that of Y is φ2(θ2).

Then, we have the following facts:

φ1(θ1) = φ(θ1, 0), φ2(θ2) = φ(0, θ2).
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Proof:

Again, the definition of the moment-generating func-

tion of X and Y is represented as:

φ(θ1, θ2) = E(eθ1X+θ2Y) =

∫ ∞

−∞

∫ ∞

−∞

eθ1 x+θ2y fxy(x, y) dx dy.

When φ(θ1, θ2) is evaluated at θ2 = 0, φ(θ1, 0) is rewrit-

ten as follows:

φ(θ1, 0) = E(eθ1X) =

∫ ∞

−∞

∫ ∞

−∞

eθ1 x fxy(x, y) dx dy

=

∫ ∞

−∞

eθ1 x
(

∫ ∞

−∞

fxy(x, y) dy
)

dx
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=

∫ ∞

−∞

eθ1 x fx(x) dx = E(eθ1X) = φ1(θ1).

Thus, we obtain the result: φ(θ1, 0) = φ1(θ1).

Similarly, φ(0, θ2) = φ2(θ2) can be derived.
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4. Theorem: The moment-generating function of (X,Y)

is given by φ(θ1, θ2).

Let φ1(θ1) and φ2(θ2) be the moment-generating func-

tions of X and Y , respectively.

If X is independent of Y , we have:

φ(θ1, θ2) = φ1(θ1)φ2(θ2).
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Proof:

From the definition of φ(θ1, θ2), the moment-generating

function of X and Y is rewritten as follows:

φ(θ1, θ2) = E(eθ1X+θ2Y) = E(eθ1X)E(eθ2Y) = φ1(θ1)φ2(θ2).

The second equality holds because X is independent of

Y .
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Multivariate Case: For multivariate random variables X1,

X2, · · ·, Xn, the moment-generating function is defined as:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn).
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1. Theorem: If the multivariate random variables X1,

X2, · · ·, Xn are mutually independent,

the moment-generating function of X1, X2, · · ·, Xn, de-

noted by φ(θ1, θ2, · · ·, θn), is given by:

φ(θ1, θ2, · · · , θn) = φ1(θ1)φ2(θ2) · · · φn(θn),

where φi(θ) = E(eθXi).
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Proof:

From the definition of the moment-generating function

in the multivariate cases, we obtain the following:

φ(θ1, θ2, · · · , θn) = E(eθ1X1+θ2X2+···+θnXn)

= E(eθ1X1)E(eθ2X2) · · ·E(eθnXn)

= φ1(θ1)φ2(θ2) · · · φn(θn).
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2. Theorem: Suppose that the multivariate random vari-

ables X1, X2, · · ·, Xn are mutually independently and

identically distributed.

Suppose that Xi ∼ N(µ, σ2).

Let us define µ̂ =
∑n

i=1 aiXi, where ai, i = 1, 2, · · · , n,

are assumed to be known.

Then, µ̂ ∼ N(µ
∑n

i=1 ai, σ
2
∑n

i=1 a2
i
).
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Proof:

From Example 1.8 (p.111) and Example 1.9 (p.147), it

is shown that the moment-generating function of X is

given by: φx(θ) = exp(µθ+ 1
2
σ2θ2), when X is normally

distributed as X ∼ N(µ, σ2).
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Let φµ̂ be the moment-generating function of µ̂.

φµ̂(θ) = E(eθµ̂) = E(eθ
∑n

i=1 aiXi) =

n
∏

i=1

E(eθaiXi)

=

n
∏

i=1

φx(aiθ) =

n
∏

i=1

exp(µaiθ +
1

2
σ2a2

i θ
2)

= exp(µ

n
∑

i=1

aiθ +
1

2
σ2

n
∑

i=1

a2
i θ

2)

which is equivalent to the moment-generating func-

tion of the normal distribution with mean µ
∑n

i=1 ai and

variance σ2
∑n

i=1 a2
i
, where µ and σ2 in φx(θ) is simply
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replaced by µ
∑n

i=1 ai and σ2
∑n

i=1 a2
i

in φµ̂(θ), respec-

tively.

Moreover, note as follows.

When ai = 1/n is taken for all i = 1, 2, · · · , n, i.e.,

when µ̂ = X is taken, µ̂ = X is normally distributed as:

X ∼ N(µ, σ2/n).
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6 Law of Large Numbers (

) and Central Limit Theorem (

)

6.1 Chebyshev’s Inequality (

)

227

Theorem: Let g(X) be a nonnegative function of the ran-

dom variable X, i.e., g(X) ≥ 0.

If E(g(X)) exists, then we have:

P(g(X) ≥ k) ≤
E(g(X))

k
, (6)

for a positive constant value k.
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Proof:

We define the discrete random variable U as follows:

U =



















1, if g(X) ≥ k,

0, if g(X) < k.

Thus, the discrete random variable U takes 0 or 1.

Suppose that the probability function of U is given by:

f (u) = P(U = u),

where P(U = u) is represented as:

P(U = 1) = P(g(X) ≥ k),
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P(U = 0) = P(g(X) < k).

Then, in spite of the value which U takes, the following

equation always holds:

g(X) ≥ kU,

which implies that we have g(X) ≥ k when U = 1 and g(X) ≥

0 when U = 0, where k is a positive constant value.

Therefore, taking the expectation on both sides, we obtain:

E(g(X)) ≥ kE(U), (7)
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where E(U) is given by:

E(U) =

1
∑

u=0

uP(U = u) = 1 × P(U = 1) + 0 × P(U = 0)

= P(U = 1) = P(g(X) ≥ k). (8)

Accordingly, substituting equation (8) into equation (7), we

have the following inequality:

P(g(X) ≥ k) ≤
E(g(X))

k
.
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Chebyshev’s Inequality: Assume that E(X) = µ, V(X) =

σ2, and λ is a positive constant value. Then, we have the

following inequality:

P(|X − µ| ≥ λσ) ≤
1

λ2
,

or equivalently,

P(|X − µ| < λσ) ≥ 1 −
1

λ2
,

which is called Chebyshev’s inequality.
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Proof:

Take g(X) = (X − µ)2 and k = λ2σ2. Then, we have:

P((X − µ)2 ≥ λ2σ2) ≤
E(X − µ)2

λ2σ2
,

which implies P(|X − µ| ≥ λσ) ≤
1

λ2
.

Note that E(X − µ)2
= V(X) = σ2.

Since we have P(|X − µ| ≥ λσ) + P(|X − µ| < λσ) = 1, we

can derive the following inequality:

P(|X − µ| < λσ) ≥ 1 −
1

λ2
. (9)
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An Interpretation of Chebyshev’s inequality: 1/λ2 is an

upper bound for the probability P(|X − µ| ≥ λσ).

Equation (9) is rewritten as:

P(µ − λσ < X < µ + λσ) ≥ 1 −
1

λ2
.

That is, the probability that X falls within λσ units of µ is

greater than or equal to 1 − 1/λ2.

Taking an example of λ = 2, the probability that X falls

within two standard deviations of its mean is at least 0.75.
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Furthermore, note as follows.

Taking ε = λσ, we obtain as follows:

P(|X − µ| ≥ ε) ≤
σ2

ε2
,

i.e.,

P(|X − E(X)| ≥ ε) ≤
V(X)

ε2
, (10)

which inequality is used in the next section.
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Remark: Equation (10) can be derived when we take g(X) =

(X − µ)2, µ = E(X) and k = ε2 in equation (6).

Even when we have µ , E(X), the following inequality still

hold:

P(|X − µ| ≥ ε) ≤
E((X − µ)2)

ε2
.

Note that E((X−µ)2) represents the mean square error (MSE).

When µ = E(X), the mean square error reduces to the vari-

ance.
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6.2 Law of Large Numbers ( ) and

Convergence in Probability ( )

Law of Large Numbers 1: Assume that X1, X2, · · ·, Xn

are mutually independently and identically distributed with

mean E(Xi) = µ for all i.

Supopose that the moment-generating function of Xi is finite.

Define Xn =
1

n

n
∑

i=1

Xi.

Then, Xn −→ µ as n −→ ∞.
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Proof: The moment-generating function is written as:

φ(θ) = 1 + µ′1θ +
1

2!
µ′2θ

2
+

1

3!
µ′3θ

3
+ · · ·

= 1 + µ′1θ + O(θ2)

where µ′
k
= E(Xk) for all k. That is, all the moments exist.

φx(θ) =
(

φ
(θ

n

))n
=

(

1 + µ′1
θ

n
+ O(

θ2

n2
)
)n

=

(

1 + µ′1
θ

n
+ O(

1

n2
)
)n
=

(

(1 + x)
1
x

)µθ+O(n−1)

−→ exp(µθ) as x −→ 0,
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which is the following probability function:

f (x) =



















1 if x = µ,

0 otherwise.

φ(θ) =
∑

eθx f (x) = eθµ f (µ) = eθµ
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Law of Large Numbers 2: Assume that X1, X2, · · ·, Xn

are mutually independently and identically distributed with

mean E(Xi) = µ and variance V(Xi) = σ
2 < ∞ for all i.

Then, for any positive value ε, as n −→ ∞, we have the

following result:

P(|Xn − µ| > ε) −→ 0,

where Xn =
1

n

n
∑

i=1

Xi.

We say that Xn converges in probability to µ.
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