
Law of Large Numbers 2: Assume that X1, X2, · · ·, Xn

are mutually independently and identically distributed with

mean E(Xi) = µ and variance V(Xi) = σ
2 < ∞ for all i.

Then, for any positive value ε, as n −→ ∞, we have the

following result:

P(|Xn − µ| > ε) −→ 0,

where Xn =
1

n

n∑

i=1

Xi.

We say that Xn converges in probability to µ.
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Proof:

Using (10), Chebyshev’s inequality is represented as follows:

P(|Xn − E(Xn)| > ε) ≤ V(Xn)

ε2
,

where X in (10) is replaced by Xn.

We know E(Xn) = µ and V(Xn) =
σ2

n
, which are substituted

into the above inequality.

Then, we obtain:

P(|Xn − µ| > ε) ≤
σ2

nε2
.
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Accordingly, when n −→ ∞, the following equation holds:

P(|Xn − µ| > ε) ≤
σ2

nε2
−→ 0.

That is, Xn −→ µ is obtained as n −→ ∞, which is written

as: plim Xn = µ.

This theorem is called the law of large numbers.

The condition P(|Xn − µ| > ε) −→ 0 or equivalently P(|Xn −

µ| < ε) −→ 1 is used as the definition of convergence in

probability ( ).

In this case, we say that Xn converges in probability to µ.
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Theorem: In the case where X1, X2, · · ·, Xn are not iden-

tically distributed and they are not mutually independently

distributed, define:

mn = E(

n∑

i=1

Xi), Vn = V(

n∑

i=1

Xi),

and assume that

mn

n
=

1

n
E(

n∑

i=1

Xi) < ∞,
Vn

n
=

1

n
V(

n∑

i=1

Xi) < ∞,

Vn

n2
−→ 0, as n −→ ∞.
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Then, we obtain the following result:

∑n
i=1 Xi − mn

n
−→ 0.

That is, Xn converges in probability to lim
n→∞

mn

n
.

This theorem is also called the law of large numbers.

244

Proof:

Remember Chebyshev’s inequality:

P(|X − E(X)| > ε) ≤
V(X)

ε2
,

Replace X, E(X) and V(X)

by Xn, E(Xn) =
mn

n
and V(Xn) =

Vn

n2
.

Then, we obtain:

P(|Xn −
mn

n
| > ε) ≤ Vn

n2ε2
.
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As n goes to infinity,

P(|Xn −
mn

n
| > ε) ≤

Vn

n2ε2
−→ 0.

Therefore, Xn −→ lim
n→∞

mn

n
as n −→ ∞.
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6.3 Central Limit Theorem ( ) and

Convergence in Distribution ( )

Central Limit Theorem: X1, X2, · · ·, Xn are mutually in-

dependently and identically distributed with E(Xi) = µ and

V(Xi) = σ
2 for all i. Both µ and σ2 are finite.

Under the above assumptions, when n −→ ∞, we have:

P
(Xn − µ
σ/
√

n
< x
)
−→
∫ x

−∞

1
√

2π
e−

1
2

u2

du,

which is called the central limit theorem.
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Proof:

Define Yi =
Xi − µ
σ

. We can rewrite as follows:

Xn − µ
σ/
√

n
=

1
√

n

n∑

i=1

Xi − µ
σ
=

1
√

n

n∑

i=1

Yi.

Since Y1, Y2, · · ·, Yn are mutually independently and iden-

tically distributed, the moment-generating function of Yi is

identical for all i, which is denoted by φ(θ).
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Using E(Yi) = 0 and V(Yi) = 1, the moment-generating func-

tion of Yi, φ(θ), is rewritten as:

φ(θ) = E(eYiθ) = E
(
1 + Yiθ +

1

2
Y2

i θ
2
+

1

3!
Y3

i θ
3 · · ·
)

= 1 +
1

2
θ2 + O(θ3).

In the second equality, eYiθ is approximated by the Taylor

series expansion around θ = 0.

249

(*) Remark:

O(x) implies that it is a polynomial function of x and the

higher-order terms but it is dominated by x.

In this case, O(θ3) is a function of θ3, θ4, · · ·.

Since the moment-generating function is conventionally eval-

uated at θ = 0, θ3 is the largest value of θ3, θ4, · · · and accord-

ingly O(θ3) is dominated by θ3 (in other words, θ4, θ5, · · · are

small enough, compared with θ3).
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Define Z as:

Z =
1
√

n

n∑

i=1

Yi.

Then, the moment-generating function of Z, i.e., φz(θ), is

given by:

φz(θ) = E(eZθ) = E
(
e
θ√
n

∑n
i=1 Yi
)
=

n∏

i=1

E
(
e
θ√
n

Yi
)
=

(
φ(
θ
√

n
)
)n

=

(
1 +

1

2

θ2

n
+ O(

θ3

n
3
2

)
)n
=

(
1 +

1

2

θ2

n
+ O(n−

3
2 )
)n
.

We consider that n goes to infinity.

Therefore, O( θ
3

n
3
2

) indicates a function of n−
3
2 .
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Moreover, consider x =
1

2

θ2

n
+ O(n−

3
2 ).

Multiply n/x on both sides of x =
1

2

θ2

n
+ O(n−

3
2 ).

Then, we obtain n =
1

x

(1
2
θ2 + O(n−

1
2 )
)
.

Substitute n =
1

x

(1
2
θ2 +O(n−

1
2 )
)

into the moment-generating

function of Z, i.e., φz(θ).

Then, we obtain:

φz(θ) =
(
1 +

1

2

θ2

n
+ O(n−

3
2 )
)n
= (1 + x)

1
x
( θ

2

2
+O(n

− 1
2 ))

=

(
(1 + x)

1
x

) θ2
2
+O(n

− 1
2 )
−→ e

θ2

2 .
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Note that x −→ 0 when n −→ ∞ and that lim
x→0

(1 + x)1/x
= e

as in Section 2.3 (p.35).

Furthermore, we have O(n−
1
2 ) −→ 0 as n −→ ∞.

Since φz(θ) = e
θ2

2 is the moment-generating function of the

standard normal distribution (see p.110 in Section 3.1 for the

moment-generating function of the standard normal proba-

bility density), we have:

P
(Xn − µ
σ/
√

n
< x
)
−→
∫ x

−∞

1
√

2π
e−

1
2

u2

du,
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or equivalently,

Xn − µ
σ/
√

n
−→ N(0, 1).

We say that
Xn − µ
σ/
√

n
converges in distribution to N(0, 1).

=⇒ Convergence in distribution ( )

The following expression is also possible:

√
n(Xn − µ) −→ N(0, σ2). (11)
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Corollary 1: When E(Xi) = µ, V(Xi) = σ
2 and Xn =

(1/n)
∑n

i=1 Xi, note that

Xn − E(Xn)
√

V(Xn)

=

Xn − µ
σ/
√

n
.

Therefore, we can rewrite the above theorem as:

P
(Xn − E(Xn)
√

V(Xn)

< x
)
−→
∫ x

−∞

1
√

2π
e−

1
2

u2

du.
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Corollary 2: Consider the case where X1, X2, · · ·, Xn are

not identically distributed and they are not mutually inde-

pendently distributed.

Assume that

lim
n→∞

nV(Xn) = σ2 < ∞, where Xn =
1

n

n∑

i=1

Xi.

Then, when n −→ ∞, we have:

P
(Xn − E(Xn)
√

V(Xn)

< x
)
−→
∫ x

−∞

1
√

2π
e−

1
2

u2

du.
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Summary: Let X1, X2, · · ·, Xn, · · · be a sequence of ran-

dom variables. Let X be a random variable. Let Fn be the

distribution function of Xn and F be that of X.

• Xn converges in probability to X if lim
n→∞

P(|Xn − X| ≥ ε) = 0

or lim
n→∞

P(|Xn − X| < ε) = 1 for all ε > 0.

Equivalently, we write Xn

P−→ X.

• Xn converges in distribution to X (or F) if lim
n→∞

Fn(x) = F(x)

for all x.

Equivalently, we write Xn

D−→ X or Xn

D−→ F.
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7 Statistical Inference

7.1 Point Estimation ( )

Suppose that the underlying distribution is known but the pa-

rameter θ included in the distribution is not known.

The distribution function of population is given by f (x; θ).

Let x1, x2, · · ·, xn be the n observed data drawn from the

population distribution.
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Consider estimating the parameter θ using the n observed

data.

Let θ̂n(x1, x2, · · ·, xn) be a function of the observed data x1,

x2, · · ·, xn.

θ̂n(x1, x2, · · ·, xn) is constructed to estimate the parameter θ.

θ̂n(x1, x2, · · ·, xn) takes a certain value given the n observed

data.

θ̂n(x1, x2, · · ·, xn) is called the point estimate of θ, or simply

the estimate of θ.

259

Example 1.11: Consider the case of θ = (µ, σ2), where

the unknown parameters contained in population is given by

mean and variance.

A point estimate of population mean µ is given by:

µ̂n(x1, x2, · · · , xn) ≡ x =
1

n

n∑

i=1

xi.

260

A point estimate of population variance σ2 is:

σ̂2
n(x1, x2, · · · , xn) ≡ s2

=

1

n − 1

n∑

i=1

(xi − x)2.

An alternative point estimate of population variance σ2 is:

σ̃2
n(x1, x2, · · · , xn) ≡ s∗∗2 =

1

n

n∑

i=1

(xi − x)2.
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7.2 Statistic, Estimate and Estimator (

)

The underlying distribution of population is assumed to be

known, but the parameter θ, which characterizes the under-

lying distribution, is unknown.

The probability density function of population is given by

f (x; θ).
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Let X1, X2, · · ·, Xn be a subset of population, which are re-

garded as the random variables and are assumed to be mutu-

ally independent.

x1, x2, · · ·, xn are taken as the experimental values of the

random variables X1, X2, · · ·, Xn.

In statistics, we consider that n-variate random variables X1,

X2, · · ·, Xn take the experimental values x1, x2, · · ·, xn by

chance.
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There, the experimental values and the actually observed

data series are used in the same meaning.

θ̂n(x1, x2, · · ·, xn) denotes the point estimate of θ.

In the case where the observed data x1, x2, · · ·, xn are re-

placed by the corresponding random variables X1, X2, · · ·,

Xn, a function of X1, X2, · · ·, Xn, i.e., θ̂(X1, X2, · · ·, Xn), is

called the estimator ( ) of θ, which should be distin-

guished from the estimate ( ) of θ, i.e., θ̂(x1, x2, · · ·,

xn).
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Example 1.12: Let X1, X2, · · ·, Xn denote a random sample

of n from a given distribution f (x; θ).

Consider the case of θ = (µ, σ2).

The estimator of µ is given by X =
1

n

n∑

i=1

Xi, while the esti-

mate of µ is x =
1

n

n∑

i=1

xi.

The estimator of σ2 is S 2
=

1

n − 1

n∑

i=1

(Xi − X)2 and the esti-

mate of σ2 is s2
=

1

n − 1

n∑

i=1

(xi − x)2.
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There are numerous estimators and estimates of θ.

All of
1

n

n∑

i=1

Xi,
X1 + Xn

2
, median of (X1, X2, · · ·, Xn) and so

on are taken as the estimators of µ.

Of course, they are called the estimates of θ when Xi is re-

placed by xi for all i.

Both S 2
=

1

n − 1

n∑

i=1

(Xi − X)2 and S ∗2 =
1

n

2∑

i=1

(Xi − X)2 are

the estimators of σ2.
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We need to choose one out of the numerous estimators of θ.

The problem of choosing an optimal estimator out of the nu-

merous estimators is discussed in Sections 7.4 and 7.5.

In addition, note as follows.

A function of random variables is called a statistic (

). The statistic for estimation of the parameter is called an

estimator.

Therefore, an estimator is a family of a statistic.
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7.3 Estimation of Mean and Variance

Suppose that the population distribution is given by f (x; θ).

The random sample X1, X2, · · ·, Xn are assumed to be drawn

from the population distribution f (x; θ), where θ = (µ, σ2).

Therefore, we can assume that X1, X2, · · ·, Xn are mutually in-

dependently and identically distributed, where “identically”

implies E(Xi) = µ and V(Xi) = σ
2 for all i.

Consider the estimators of θ = (µ, σ2) as follows.
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1. The estimator of population mean µ is:

• X =
1

n

n∑

i=1

Xi.

2. The estimators of population variance σ2 are:

• S ∗2 =
1

n

n∑

i=1

(Xi − µ)2, when µ is known,

• S 2
=

1

n − 1

n∑

i=1

(Xi − X)2,

• S ∗∗2 =
1

n

n∑

i=1

(Xi − X)2,
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Properties of X: From Theorem on p.138, mean and vari-

ance of X are obtained as follows:

E(X) = µ, V(X) =
σ2

n
.

Properties of S
∗2, S

2 and S
∗∗2: The expectation of S ∗2 is:

E(S ∗2) = E
(1
n

n∑

i=1

(Xi − µ)2
)
=

1

n

n∑

i=1

E
(
(Xi − µ)2

)

=

1

n

n∑

i=1

V(Xi) =
1

n

n∑

i=1

σ2
= σ2.
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