

Law of Large Numbers 2: Assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean $E(X_i) = \mu$ and variance $V(X_i) = \sigma^2 < \infty$ for all i . Then, for any positive value ϵ , as $n \rightarrow \infty$, we have the following result:

$$P(|\bar{X}_n - \mu| > \epsilon) \rightarrow 0,$$

$$\text{where } \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

We say that \bar{X}_n converges in probability to μ .

240

Proof:

Using (10), Chebyshev's inequality is represented as follows:

$$P(|\bar{X}_n - E(\bar{X}_n)| > \epsilon) \leq \frac{V(\bar{X}_n)}{\epsilon^2},$$

where X in (10) is replaced by \bar{X}_n .

We know $E(\bar{X}_n) = \mu$ and $V(\bar{X}_n) = \frac{\sigma^2}{n}$, which are substituted into the above inequality.

Then, we obtain:

$$P(|\bar{X}_n - \mu| > \epsilon) \leq \frac{\sigma^2}{n\epsilon^2}.$$

241

Accordingly, when $n \rightarrow \infty$, the following equation holds:

$$P(|\bar{X}_n - \mu| > \epsilon) \leq \frac{\sigma^2}{n\epsilon^2} \rightarrow 0.$$

That is, $\bar{X}_n \rightarrow \mu$ is obtained as $n \rightarrow \infty$, which is written as: $\text{plim } \bar{X}_n = \mu$.

This theorem is called the **law of large numbers**.

The condition $P(|\bar{X}_n - \mu| > \epsilon) \rightarrow 0$ or equivalently $P(|\bar{X}_n - \mu| < \epsilon) \rightarrow 1$ is used as the definition of **convergence in probability** (確率収束).

In this case, we say that \bar{X}_n converges in probability to μ .

242

Theorem: In the case where X_1, X_2, \dots, X_n are not identically distributed and they are not mutually independently distributed, define:

$$m_n = E\left(\sum_{i=1}^n X_i\right), \quad V_n = V\left(\sum_{i=1}^n X_i\right),$$

and assume that

$$\begin{aligned} \frac{m_n}{n} &= \frac{1}{n} E\left(\sum_{i=1}^n X_i\right) < \infty, & \frac{V_n}{n} &= \frac{1}{n} V\left(\sum_{i=1}^n X_i\right) < \infty, \\ \frac{V_n}{n^2} &\rightarrow 0, & \text{as } n &\rightarrow \infty. \end{aligned}$$

243

Then, we obtain the following result:

$$\frac{\sum_{i=1}^n X_i - m_n}{n} \rightarrow 0.$$

That is, \bar{X}_n converges in probability to $\lim_{n \rightarrow \infty} \frac{m_n}{n}$.

This theorem is also called the law of large numbers.

244

Proof:

Remember Chebyshev's inequality:

$$P(|X - E(X)| > \epsilon) \leq \frac{V(X)}{\epsilon^2},$$

Replace $X, E(X)$ and $V(X)$

by $\bar{X}_n, E(\bar{X}_n) = \frac{m_n}{n}$ and $V(\bar{X}_n) = \frac{V_n}{n^2}$.

Then, we obtain:

$$P\left(\left|\bar{X}_n - \frac{m_n}{n}\right| > \epsilon\right) \leq \frac{V_n}{n^2 \epsilon^2}.$$

245

As n goes to infinity,

$$P(|\bar{X}_n - \frac{m_n}{n}| > \epsilon) \leq \frac{V_n}{n^2 \epsilon^2} \rightarrow 0.$$

Therefore, $\bar{X}_n \rightarrow \lim_{n \rightarrow \infty} \frac{m_n}{n}$ as $n \rightarrow \infty$.

6.3 Central Limit Theorem (中心極限定理) and Convergence in Distribution (分布収束)

Central Limit Theorem: X_1, X_2, \dots, X_n are mutually independently and identically distributed with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all i . Both μ and σ^2 are finite.

Under the above assumptions, when $n \rightarrow \infty$, we have:

$$P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < x\right) \rightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du,$$

which is called the **central limit theorem**.

246

247

Proof:

Define $Y_i = \frac{X_i - \mu}{\sigma}$. We can rewrite as follows:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i.$$

Since Y_1, Y_2, \dots, Y_n are mutually independently and identically distributed, the moment-generating function of Y_i is identical for all i , which is denoted by $\phi(\theta)$.

Using $E(Y_i) = 0$ and $V(Y_i) = 1$, the moment-generating function of Y_i , $\phi(\theta)$, is rewritten as:

$$\begin{aligned} \phi(\theta) &= E(e^{Y_i \theta}) = E\left(1 + Y_i \theta + \frac{1}{2} Y_i^2 \theta^2 + \frac{1}{3!} Y_i^3 \theta^3 \dots\right) \\ &= 1 + \frac{1}{2} \theta^2 + O(\theta^3). \end{aligned}$$

In the second equality, $e^{Y_i \theta}$ is approximated by the Taylor series expansion around $\theta = 0$.

248

249

(*) Remark:

$O(x)$ implies that it is a polynomial function of x and the higher-order terms but it is dominated by x .

In this case, $O(\theta^3)$ is a function of $\theta^3, \theta^4, \dots$.

Since the moment-generating function is conventionally evaluated at $\theta = 0$, θ^3 is the largest value of $\theta^3, \theta^4, \dots$ and accordingly $O(\theta^3)$ is dominated by θ^3 (in other words, $\theta^4, \theta^5, \dots$ are small enough, compared with θ^3).

Define Z as:

$$Z = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i.$$

Then, the moment-generating function of Z , i.e., $\phi_z(\theta)$, is given by:

$$\begin{aligned} \phi_z(\theta) &= E(e^{Z\theta}) = E\left(e^{\frac{\theta}{\sqrt{n}} \sum_{i=1}^n Y_i}\right) = \prod_{i=1}^n E\left(e^{\frac{\theta}{\sqrt{n}} Y_i}\right) = \left(\phi\left(\frac{\theta}{\sqrt{n}}\right)\right)^n \\ &= \left(1 + \frac{1}{2} \frac{\theta^2}{n} + O\left(\frac{\theta^3}{n^{\frac{3}{2}}}\right)\right)^n = \left(1 + \frac{1}{2} \frac{\theta^2}{n} + O(n^{-\frac{3}{2}})\right)^n. \end{aligned}$$

We consider that n goes to infinity.

Therefore, $O(\frac{\theta^3}{n^{\frac{3}{2}}})$ indicates a function of $n^{-\frac{3}{2}}$.

250

251

Moreover, consider $x = \frac{1}{2} \frac{\theta^2}{n} + O(n^{-\frac{3}{2}})$.

Multiply n/x on both sides of $x = \frac{1}{2} \frac{\theta^2}{n} + O(n^{-\frac{3}{2}})$.

Then, we obtain $n = \frac{1}{x} \left(\frac{1}{2} \theta^2 + O(n^{-\frac{1}{2}}) \right)$.

Substitute $n = \frac{1}{x} \left(\frac{1}{2} \theta^2 + O(n^{-\frac{1}{2}}) \right)$ into the moment-generating function of Z , i.e., $\phi_z(\theta)$.

Then, we obtain:

$$\begin{aligned}\phi_z(\theta) &= \left(1 + \frac{1}{2} \frac{\theta^2}{n} + O(n^{-\frac{3}{2}}) \right)^n = (1+x)^{\frac{1}{x}(\frac{\theta^2}{2} + O(n^{-\frac{1}{2}}))} \\ &= \left((1+x)^{\frac{1}{x}} \right)^{\frac{\theta^2}{2} + O(n^{-\frac{1}{2}})} \longrightarrow e^{\frac{\theta^2}{2}}.\end{aligned}$$

252

Note that $x \rightarrow 0$ when $n \rightarrow \infty$ and that $\lim_{x \rightarrow 0} (1+x)^{1/x} = e$ as in Section 2.3 (p.35).

Furthermore, we have $O(n^{-\frac{1}{2}}) \rightarrow 0$ as $n \rightarrow \infty$.

Since $\phi_z(\theta) = e^{\frac{\theta^2}{2}}$ is the moment-generating function of the standard normal distribution (see p.110 in Section 3.1 for the moment-generating function of the standard normal probability density), we have:

$$P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du,$$

253

or equivalently,

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \longrightarrow N(0, 1).$$

We say that $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ converges in distribution to $N(0, 1)$.

⇒ **Convergence in distribution (分布収束)**

The following expression is also possible:

$$\sqrt{n}(\bar{X}_n - \mu) \longrightarrow N(0, \sigma^2). \quad (11)$$

254

Corollary 1: When $E(X_i) = \mu$, $V(X_i) = \sigma^2$ and $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$, note that

$$\frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}.$$

Therefore, we can rewrite the above theorem as:

$$P\left(\frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du.$$

255

Corollary 2: Consider the case where X_1, X_2, \dots, X_n are not identically distributed and they are not mutually independently distributed.

Assume that

$$\lim_{n \rightarrow \infty} nV(\bar{X}_n) = \sigma^2 < \infty, \quad \text{where } \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then, when $n \rightarrow \infty$, we have:

$$P\left(\frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} < x\right) \longrightarrow \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du.$$

256

Summary: Let $X_1, X_2, \dots, X_n, \dots$ be a sequence of random variables. Let X be a random variable. Let F_n be the distribution function of X_n and F be that of X .

• X_n converges in probability to X if $\lim_{n \rightarrow \infty} P(|X_n - X| \geq \epsilon) = 0$ or $\lim_{n \rightarrow \infty} P(|X_n - X| < \epsilon) = 1$ for all $\epsilon > 0$.

Equivalently, we write $X_n \xrightarrow{P} X$.

• X_n converges in distribution to X (or F) if $\lim_{n \rightarrow \infty} F_n(x) = F(x)$ for all x .

Equivalently, we write $X_n \xrightarrow{D} X$ or $X_n \xrightarrow{D} F$.

257

7 Statistical Inference

7.1 Point Estimation (点推定)

Suppose that the underlying distribution is known but the parameter θ included in the distribution is not known.

The distribution function of population is given by $f(x; \theta)$.

Let x_1, x_2, \dots, x_n be the n observed data drawn from the population distribution.

258

Consider estimating the parameter θ using the n observed data.

Let $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ be a function of the observed data x_1, x_2, \dots, x_n .

$\hat{\theta}_n(x_1, x_2, \dots, x_n)$ is constructed to estimate the parameter θ .

$\hat{\theta}_n(x_1, x_2, \dots, x_n)$ takes a certain value given the n observed data.

$\hat{\theta}_n(x_1, x_2, \dots, x_n)$ is called the **point estimate** of θ , or simply the **estimate** of θ .

259

A point estimate of population variance σ^2 is:

$$\hat{\sigma}_n^2(x_1, x_2, \dots, x_n) \equiv s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2.$$

An alternative point estimate of population variance σ^2 is:

$$\tilde{\sigma}_n^2(x_1, x_2, \dots, x_n) \equiv s^{**2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

260

261

Let X_1, X_2, \dots, X_n be a subset of population, which are regarded as the random variables and are assumed to be mutually independent.

x_1, x_2, \dots, x_n are taken as the experimental values of the random variables X_1, X_2, \dots, X_n .

In statistics, we consider that n -variate random variables X_1, X_2, \dots, X_n take the experimental values x_1, x_2, \dots, x_n by chance.

7.2 Statistic, Estimate and Estimator (統計量, 推定値, 推定量)

The underlying distribution of population is assumed to be known, but the parameter θ , which characterizes the underlying distribution, is unknown.

The probability density function of population is given by $f(x; \theta)$.

262

263

There, the experimental values and the actually observed data series are used in the same meaning.

$\hat{\theta}_n(x_1, x_2, \dots, x_n)$ denotes the point estimate of θ .

In the case where the observed data x_1, x_2, \dots, x_n are replaced by the corresponding random variables X_1, X_2, \dots, X_n , a function of X_1, X_2, \dots, X_n , i.e., $\hat{\theta}(X_1, X_2, \dots, X_n)$, is called the **estimator** (推定量) of θ , which should be distinguished from the **estimate** (推定值) of θ , i.e., $\hat{\theta}(x_1, x_2, \dots, x_n)$.

264

Example 1.12: Let X_1, X_2, \dots, X_n denote a random sample of n from a given distribution $f(x; \theta)$.

Consider the case of $\theta = (\mu, \sigma^2)$.

The estimator of μ is given by $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, while the estimate of μ is $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

The estimator of σ^2 is $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and the estimate of σ^2 is $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$.

265

We need to choose one out of the numerous estimators of θ .

The problem of choosing an optimal estimator out of the numerous estimators is discussed in Sections 7.4 and 7.5.

In addition, note as follows.

A function of random variables is called a **statistic** (統計量). The statistic for estimation of the parameter is called an estimator.

Therefore, an estimator is a family of a statistic.

There are numerous estimators and estimates of θ .

All of $\frac{1}{n} \sum_{i=1}^n X_i$, $\frac{X_1 + X_n}{2}$, median of (X_1, X_2, \dots, X_n) and so on are taken as the estimators of μ .

Of course, they are called the estimates of θ when X_i is replaced by x_i for all i .

Both $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and $S^{*2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ are the estimators of σ^2 .

266

267

7.3 Estimation of Mean and Variance

Suppose that the population distribution is given by $f(x; \theta)$.

The random sample X_1, X_2, \dots, X_n are assumed to be drawn from the population distribution $f(x; \theta)$, where $\theta = (\mu, \sigma^2)$.

Therefore, we can assume that X_1, X_2, \dots, X_n are mutually independently and identically distributed, where “identically” implies $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all i .

Consider the estimators of $\theta = (\mu, \sigma^2)$ as follows.

268

1. The estimator of population mean μ is:

- $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

2. The estimators of population variance σ^2 are:

- $S^{*2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$, when μ is known,
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$,
- $S^{**2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$,

269

Properties of \bar{X} : From Theorem on p.138, mean and variance of \bar{X} are obtained as follows:

$$E(\bar{X}) = \mu, \quad V(\bar{X}) = \frac{\sigma^2}{n}.$$

Properties of S^{*2} , S^2 and S^{2} :** The expectation of S^{*2} is:

$$\begin{aligned} E(S^{*2}) &= E\left(\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2\right) = \frac{1}{n} \sum_{i=1}^n E((X_i - \mu)^2) \\ &= \frac{1}{n} \sum_{i=1}^n V(X_i) = \frac{1}{n} \sum_{i=1}^n \sigma^2 = \sigma^2. \end{aligned}$$