Law of Large Numbers 2: Assume that X, X5, -+, X,
are mutually independently and identically distributed with
mean E(X;) = u and variance V(X;) = 0> < oo for all i.

Then, for any positive value €, as n — oo, we have the

following result:
P(X, —ul >¢€) — 0,

_ 1 <&
where X, = — X;.

We say that X, converges in probability to .
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Accordingly, when n — oo, the following equation holds:

_ o2

P(X, —ul>e€) < T — 0.
That is, Yn — u is obtained as n — oo, which is written
as: plim X, = p.
This theorem is called the law of large numbers.
The condition P(|Y,l — | > €) — 0 or equivalently P(IX, -
ul < €) — 1 1is used as the definition of convergence in
probability (FEZEILR).

In this case, we say that X, converges in probability to .
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Then, we obtain the following result:

Z?:] Xi —my
n

— 0.

That is, X, converges in probability to lim iy

n—co N

This theorem is also called the law of large numbers.
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Proof:

Using (10), Chebyshev’s inequality is represented as follows:

V(X,)

e’

P(X, - E(X,)| > e) <

where X in (10) is replaced by X,,.

We know E(X,) = u and V(X,) = %, which are substituted
into the above inequality.

Then, we obtain:

2
P(X, -l > €) < .
ne
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Theorem: In the case where X, X, ---, X,, are not iden-
tically distributed and they are not mutually independently

distributed, define:

m=Hi&x V, = V(). X)),
i=1 i

and assume that

m, 1 n vV, 1 .
— =-E X)) < 00, —=-V X;) < o0,
V,
- — 0, asn— oo
n
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Proof:

Remember Chebyshev’s inequality:

V(X)

P(X —EX)| > €) < —52,
€

Replace X, E(X) and V(X)
v v n v Vn
by X,,, E(X,) = = and V(X,) = —.
n n
Then, we obtain:

— m, V.,
P(X,——|>¢) < =5
n n-e
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As n goes to infinity,

X7 n Vn
PIX, - 2> < = — 0.
n n-e

_ . m
Therefore, X, — lim — as n — co.

n—oco N
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Proof:
Xi iy .
Define Y; = ——. We can rewrite as follows:
o
X, - 1 X - 1 ¢
n— M — _Z t_/’l - Z Yz
o/Vn  \n oo Vi &
Since Y, Y, -+, Y, are mutually independently and iden-

tically distributed, the moment-generating function of Y; is

identical for all i, which is denoted by ¢(0).
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(*) Remark:

O(x) implies that it is a polynomial function of x and the
higher-order terms but it is dominated by x.

In this case, O(6%) is a function of 63, 6%, - - .

Since the moment-generating function is conventionally eval-
uated at 6 = 0, 6 is the largest value of 6°, §*, - - - and accord-
ingly O(#°) is dominated by 6° (in other words, #*, 6°, - - - are

small enough, compared with 6%).
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6.3 Central Limit Theorem (/B[R E ) and
Convergence in Distribution (% %Y%)

Central Limit Theorem: X, X;, ---, X, are mutually in-
dependently and identically distributed with E(X;) = u and
V(X;) = o for all i. Both u and o2 are finite.

Under the above assumptions, when n — oo, we have:

X, —u f 1
P <x) — e 2" du,
(O-/ \/ﬁ ) —00 V27T
which is called the central limit theorem.
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Using E(Y;) = 0 and V(Y;) = 1, the moment-generating func-
tion of Y;, ¢(0), is rewritten as:

1
2

1

#(0) = E(e"?) = E(1 +Y0+ 5

YR+ Y6 )

1
=1+ 592 +0(6).

In the second equality, e' is approximated by the Taylor

series expansion around 6 = 0.
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Define Z as:
1 n
Z=— Y.
Vi
Then, the moment-generating function of Z, i.e., ¢.(0), is
given by:
0 yn : L O y. 6 n
$.(0) = E(e”) = E(eﬁz':‘ Y‘) = l_[ E(e WY’) = (¢(%))
i=1

2 3 " 2
=(1+ %% + 0(:—%)) =(1+ %% +0(n™))

n

We consider that n goes to infinity.

Therefore, 0(0—2) indicates a function of 72 .

n2
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2
Moreover, consider x = 3 + O(n‘%).
n
167 3
Multiply n/x on both sides of x = > + O(n‘%).
n

1,1
Then, we obtain n = —(—02 + O(n’%)).
RPN
Substitute n = —(592 + O(n_%)) into the moment-generating
X
function of Z, i.e., ¢.(6).

Then, we obtain:
192 n 2 _1
6.0) = (14 53—+ 0 ) = (1 + x)iErow ™
2n
2100 2) 2

= (1 +x)) — 7.
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or equivalently,

Xn_:u
o/\n

— N(,1).

X
We say that
o

= Convergence in distribution (% %X 3R)

—H converges in distribution to N(0, 1).

The following expression is also possible:

Va(X, — ) — N(0,07). (11)
254
Corollary 2: Consider the case where X, X5, -+, X,, are

not identically distributed and they are not mutually inde-
pendently distributed.

Assume that

n—oo

_ — 1
lim nV(X,) = 0> < o, where X, = — Z X;.
n &

Then, when n — oo, we have:

P(Y"—_ E(Yn) < x) — fx ! e du.
VXD = V2n
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Note that x — 0 when n — oo and that }CI_IB 1+x)*=e
as in Section 2.3 (p.35).

Furthermore, we have O(n‘%) —> 0asn — oo,

Since ¢,(0) = e% is the moment-generating function of the
standard normal distribution (see p.110 in Section 3.1 for the
moment-generating function of the standard normal proba-

bility density), we have:

X,
P(== — e 2 du,
(0'/ f \/ﬂe
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Corollary 1: When E(X;) = u, V(X)) = o2 and X, =
(1/n) X1, X;, note that
)_(n - E(Xn) _ )_(n —H
NS

Therefore, we can rewrite the above theorem as:

X, - EX, )
P( f — " du,
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Summary: Let X;, X5, ---, X,,, --- be a sequence of ran-
dom variables. Let X be a random variable. Let F, be the
distribution function of X, and F be that of X.
e X, converges in probability to X if lim P(|X, — X| > €) =0
or lim P(|X, — X| <€) =1 forall e > 0.

n—oo
Equivalently, we write X, ox
e X, converges in distribution to X (or F) if lim F,(x) = F(x)
for all x.

Equivalently, we write X, 2, XorX, 2, F.
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7 Statistical Inference

7.1 Point Estimation (2 7E)

Suppose that the underlying distribution is known but the pa-
rameter 6 included in the distribution is not known.

The distribution function of population is given by f(x; 6).
Let x;, x», ---, x, be the n observed data drawn from the

population distribution.
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Example 1.11: Consider the case of 6 = (u,0?), where
the unknown parameters contained in population is given by

mean and variance.
A point estimate of population mean y is given by:

(X1, X2, -+, X)) EX == ) X
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7.2 Statistic, Estimate and Estimator (§iit=,
HEE HTEE)

The underlying distribution of population is assumed to be
known, but the parameter 6, which characterizes the under-

lying distribution, is unknown.

The probability density function of population is given by
f(x;60).
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Consider estimating the parameter 6 using the n observed

data.

Let 9n(x1, X, -+, X,) be a function of the observed data xi,
X, X

9,,(x1, X2, + -+, X,) 18 constructed to estimate the parameter 6.
9n(x1, X2, *++, X,) takes a certain value given the n observed
data.

0,(x1, X2, - -, x,,) is called the point estimate of 6, or simply

the estimate of 6.
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A point estimate of population variance o is:
1 n
A2 = 2 -2
Gu(x1, X0, -, x,) =57 = § (x; = x)".
n-1l4&

An alternative point estimate of population variance o is:

1 n
~2 _ 2 —2
T, (X1, X2, 000, X)) = 8577 = - E (x; = %),
i=1
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Let X, X5, - -+, X,, be a subset of population, which are re-

garded as the random variables and are assumed to be mutu-

ally independent.
X1, X2, -+, X, are taken as the experimental values of the
random variables X;, X5, - - -, X,,.

In statistics, we consider that n-variate random variables X,
X5, --+, X, take the experimental values x;, x5, --+, X, by

chance.
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There, the experimental values and the actually observed

data series are used in the same meaning.
9n(x1, X2, -+ +, X,) denotes the point estimate of 6.

In the case where the observed data x;, x,, ---, x, are re-
placed by the corresponding random variables X, X5, - - -,
X,, a function of X;, Xa, -+, X, i.e., X1, Xa, -+, X,), is
called the estimator (H£TE &) of 6, which should be distin-
guished from the estimate (3 fif) of 6, i.e., O(x;, x, - - -,

Xp).
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There are numerous estimators and estimates of 6.

1 < X +X
All of - Z X;, =L 2" median of (X;, Xa, -+, X,) and so
n 4 2

on are taken as the estimators of p.

Of course, they are called the estimates of § when X; is re-

placed by x; for all i.

1 < - 1 ¢ -
2 _ L 2 2 _ L 2
Both §~ = P iél(X, X)“and §* = . él(X, X)~ are

the estimators of 0.
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7.3 Estimation of Mean and Variance
Suppose that the population distribution is given by f(x; 6).

The random sample X, X5, -- -, X,, are assumed to be drawn

from the population distribution f(x;6), where 6 = (u, o2).

Therefore, we can assume that X, X,, - - -, X,, are mutually in-
dependently and identically distributed, where “identically”
implies E(X;) = u and V(X;) = o for all i.

Consider the estimators of 8 = (u, o) as follows.
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Example 1.12: Let Xi, X5, - - -, X, denote a random sample

of n from a given distribution f(x; 6).

Consider the case of 6 = (i, 0™2).

The estimator of y is given by X = % i X;, while the esti-
e i=1

mate of yis x = ;;x,«.

1 - —
The estimator of 0% is §> = —— Z(X,- — X)? and the esti-
n-1 —

l
. 1 < _
mate of o2 is s% = 1 Z(x,- —-%)>.
=15
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We need to choose one out of the numerous estimators of 6.

The problem of choosing an optimal estimator out of the nu-

merous estimators is discussed in Sections 7.4 and 7.5.

In addition, note as follows.
A function of random variables is called a statistic (#t5t
£). The statistic for estimation of the parameter is called an

estimator.

Therefore, an estimator is a family of a statistic.
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1. The estimator of population mean y is:
— 1<
o X =— E X,'.
n
i=1

2. The estimators of population variance o are:

1 n

o 52 =— Z(Xi — u)*, when g is known,
=

[ ] SZ = LG:(X—)_()z
n—1 P ' ’

1 ¢ -
¢ 5= -3 (X - X,
n
i=1
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Properties of X: From Theorem on p-138, mean and vari-

ance of X are obtained as follows:

0_2

EX)=n, VX =—

—.
Properties of $*2, $? and $**?: The expectation of S*? is:

B =B Y00 w) = 5 D (- )
i=1 1

i=

:’l’,«Zn;‘V(Xi): %Zo—zzaz.
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