Example 1.13a (Efficient Estimator of u): Suppose that
X1, X5, --+, X, are mutually independently, identically and

normally distributed with mean u and variance 0.

Then, we show that X is an efficient estimator of .

2
V(X) is given by O——, which does not depend on the distribu-
n

tionof X;, i=1,2,---,m. ... .. (A)
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The partial derivative of f(X; i) with respect to y is:

olog f(Xip) _ 1

o = X = ).

The Cramer-Rao inequality in this case is written as:
1
1 2
nE ((;(X— ,u)) )

1 o?

= 1— = 7 .................. (B)
n—E(X - )

V(X) >
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Example 1.13b (Efficient Estimator of 0?): Suppose that
X1, X, -+, X, are mutually independently, identically and

normally distributed with mean u and variance o>.

Is S? is an efficient estimator of o2?

E(S?) =02 ... Unbiased estimator
2 4
Under normality assumption, V(S?) is given by %, be-
- 1)§?
cause V(U) = 2(n — 1) from U = % ~Y2n - 1).
................................................... (A)

Because X; is normally distributed with mean ¢ and variance
o2, the density function of X; is given by:
1 1 )
S = \/ﬁ CXP(—zT_Z(X - 1) )
The Cramer-Rao inequality is represented as:
1
nE(<6 log(;;(X;,u)y)’
where the logarithm of f(X; w) is written as:

V(X) >

1 1
log /(X ) = 3 log(2m?) = =— (X - )"
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From (A) and (B), variance of X is equal to the lower bound
2

of Cramer-Rao inequality, i.e., V(X) = O——, which implies
n

that the equality included in the Cramer-Rao inequality holds.

Therefore, we can conclude that the sample mean X is an

efficient estimator of .

300

Because X; is normally distributed with mean u and variance

o, the density function of X; is given by:

flx0%) = eXp(—%rz(x - ,u)z).

1
V2ro?
The Cramer-Rao inequality is represented as:

5 1 ~ 1
MO dlog f(X;02)\2) #log f(X; o)\
”E(( 307 )) _”E( Fta: )

where the logarithm of f(X; o) is written as:
1 1 1
log f(X; 0?) = —= log(27) — = log(c?) — —= (X — p)’.
2 2 252
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The partial derivative of f(X;0?) with respect to o is:

dlog f(X; 0?) 1 1 5
GO T ) (X -
0o 2072 " 20‘4( H)

The 2nd partial derivative of f(X;c?) with respect to o is:
0% log f(X; 0?) 1 1
T LA O

a(0?) 204 o

The Cramer-Rao inequality in this case is written as:

V(§?) >

Example 1.14: Minimum Variance Linear Unbiased Es-
timator (/N BUSHAMRHEEE):  Suppose that X, X,
-+ -, X, are mutually independently and identically distributed
with mean p and variance o (note that the normality as-

sumption is excluded from Example 1.13).

n
Consider the following linear estimator: f = Z a;X;.
i=1
Then, we want to show f (i.e., X) is a minimum variance

. 1 . e S
linear unbiased estimator if ¢; = — for all j, i.e., if 1 = X.
n
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n
That is, if Z a; = 1 is satisfied, fi gives us a linear unbiased

estimator Tﬁ%ﬂ?*ﬁ?ﬁfi%}

Thus, as mentioned in Example 1.12 of Section 7.2, there are

numerous unbiased estimators.

n
The variance of 1 is given by o Z a.

i=1
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From (A) and (B), variance of S? is not equal to the lower
20 20°

bound of Cramer-Rao inequality, i.e., V(S?) =
n— n

Therefore, we can conclude that the sample unbiased vari-

ance S? is not an efficient estimator of .
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Utilizing Theorem on p.134, when E(X;) = p and V(X)) = ¢
for all i, we have: E(1) = u Z a; and V() = o Z a.
i=1 i=1

Since /1 is linear in X;, 1 is called a linear estimator (&2

HEE) of .

In order for ji to be unbiased, we need to have the condition:

E(ﬁ)=uza,-=ﬂ
i=1
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n

We obtain the value of ¢; which minimizes Z a’ with the

i=1
n

constraint Z a; = 1.

i=1
Construct the Lagrange function as follows:

L:%Zn:a%+/l(1—znla,-),

i=1 i=1

where A denotes the Lagrange multiplier.

The % in the first term makes computation easier.
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For minimization, the partial derivatives of L with respect to

a; and A are equal to zero, i.c.,
oL
8a,- -

dL -
a=1-Za,-=0.

i=1

a;,—A1=0, i=1,2,---,n,

. . 1. .
Solving the above equations, a; = A = — is obtained.
n

1 .. . .

When a; = — for all i, i has minimum variance in a class of
n

linear unbiased estimators.

X is a minimum variance linear unbiased estimator.
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Consistency (—Ef): Let 6, be an estimator of 6.

Suppose that for any € > 0 we have the following:
P(I@,, —0l>2¢) — O, as n — oo,

which implies that § — @ as n — co.

We say that 6, is a consistent estimator (—EHEE £) of 6.
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Here, replacing X by X, we obtain E(X) and V(X) as follows:

0_2

E(X/) =M V()_() =

n b
because E(X;) = u and V(X;) = 0> < oo for all i.
Then, when n — oo, we obtain the following result:

— 0—2
PIX-plze)< = — 0,
ne

which implies that X — 1 as n —s co.

Therefore, X is a consistent estimator of .
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The minimum variance linear unbiased estimator is dif-
ferent from the efficient estimator.

The former does not requires the normality assumption.

The latter gives us the unbiased estimator which variance is
equal to the Cramer-Rao lower bound, which is not restricted
to a class of the linear unbiased estimators.

Under normality assumption, he linear unbiased minimum
variance estimator leads to the efficient estimator.

Note that the efficient estimator does not necessarily exist.
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Example 1.15:  Suppose that X|, X3, -- -, X, are mutually

independently and identically distributed with mean u and

variance .

Assume that o2 is known.

Then, it is shown that X is a consistent estimator of .

For RV X, Chebyshev’s inequality is given by:
P(X-EX) > ¢) < VE—QX)
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Summary:

When the distribution of X; is not assumed for all i, X is
an minimum variance linear unbiased and consistent es-

timator of u.

‘When the distribution of X is assumed to be normal for all

i, X leads to an efficient and consistent estimator of .
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Example 1.16a:  Suppose that X, X5, ---, X, are mutu-
ally independently, identically and normally distributed with
mean u and variance o2

1 n _
Consider S? = —] Z(X,- — X)?, which is an unbiased es-
n—
i=1

timator of 2.

‘We obtain the following Chebyshev’s inequality:
E(S* - a?))

P(S*-c?>€) < 5
€

We compute E((S? - 0)?) = V(S?).

315

Example 1.16b:  Suppose that X, X5, ---, X, are mutu-
ally independently, identically and normally distributed with

mean y and variance 0.

Consider S**? = Z(X X)?, which is an estimate of 2.
i=1

We obtain the following Chebyshev’s inequality:

E((S sk 0.2)2)

2

P(S*™* -0’2 €) <
€

We compute E((S*2 — 02)?).
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-1
Using §*2 = ©— =52, we have the following:
n
-1 2
ES**Z_ 22=E n SZ_ 2
(872 =) =E((——=$*- 7))
n o\2
—E oy T
(-7 --7))
4
- ) B - o)+ &
(n 1) 2 0'_; _@n- 1)04.

= V(Y + _

n n n
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U:w~xz(n—l).
E(U) = 1 and V(U) = 2(1 = 1),
vy = v DS ”S )= 201 1)
RS
—-V(s 2) —2(n—1)
v(s?) = 27
n—1

E(S?-0%)) 207
e C(n-1)e

which implies that S — 02 as n — oo.

P(S? %2 €) < — 0,

Threfore, S? is a consistent estimator of 0.
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1 n _
Define S2 = — Z(X,— — X)? as an estimator o
n—
i=1

- s> - 1)s?
m % ~ x*(n~1), we obtain E(%) =
(o g

and v((”"a—?sz) =2(n-1).

2 4
Therefore, E(S?) = o and V(S?) = c [ can be derived.
n_
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Therefore, as n — oo, we obtain:

— 0.

12 1
P(IS*»Q o | > )< ( n-— )0_4
€2

Because S*? — o2, S* is a consistent estimator of o2.

S*2 is biased (see Section 7.3, p.273), but is is consistent.
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7.5 Estimation Methods

e Maximum Likelihood Estimation Method (RJCHERESE)
o Least Squares Estimation Method (/N &%)

o Method of Moment (f&=&;%)
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0 = (u, 0?) in the case of the normal distribution.

Now, in more general cases, we want to consider how to es-

timate 6.

The maximum likelihood estimator (RCHEEE) gives us

one of the solutions.

Let X3, X5, - - -, X, be mutually independently and identically

distributed random samples.
X; has the probability density function f(x; 6).

323

Let 6, be the 6 which maximizes the likelihood function.
Given data xy, x», - - -, X,,, 9,,(x1, Xz, * -+, X,,) 1s called the max-
imum likelihood estimate (MLE, SR CHEE(H).

Replacing x;, X, - -+, X, by X1, Xa, -+, X,, 6, = 0,(X1, Xo,
-+-, X,) is called the maximum likelihood estimator (MLE,
RILHEESR).

That is, solving the following equation:

alo)
—~Z -0
90 ’
MLE 8, = 6,(X,, X, -- -, X,) is obtained.
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7.5.1 Maximum Likelihood Estimator (R E )

In Section 7.4, the properties of the estimators X and S2 are

discussed.

It is shown that X is an unbiased, efficient and consistent
estimator of u under normality assumption and that S is an

unbiased and consistent estimator of o2.

The parameter 6 is included in the underlying distribution

f(x;0).
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The joint density function of X}, X, - - -, X, is given by:

S, x0,,x,50) = Hf(xi;e),
i=1

where 6 denotes the unknown parameter.
Given the actually observed data xy, x5, - - -, x,,, the joint den-

sity f(xi, x2, - - -, X,; 6) 1s regarded as a function of 6, i.e.,
160) = 16: %) = U6; x1,%3,+,x,) = | | S50,
i=1
1(0) is called the likelihood function (JCEERI%Y).
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Example 1.17a: Suppose that X;, X5, ---, X, are mutu-
ally independently, identically and normally distributed with

mean u and variance 0.
We derive the maximum likelihood estimators of u and o2,

The joint density (or the likelihood function) of X, X5, - -,
X, is:

n
f(xlsXZ, s Xy M 0—2) = l—[f('xnﬂ’ 0—2)
i=1
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= [ Jer exp(- - 7)

n 1 <
= (2ra?)™""? exp(—r‘_2 i:Zl(x,- - u)z)
= l(u, o).

The logarithm of the likelihood function is given by:
o1 P oe(o?) — — S 2
log (. o) = ~ log(2x) - 5 log(o™) = 5 — ;(x, e
which is called the log-likelihood function GRHEXAERIER).
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Solving the two equations, we obtain the maximum likeli-

hood estimates as follows:

Replacing x; by X; for i = 1,2,---,n, the maximum likeli-

hood estimators of i and o2 are given by X and §**2.
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For maximization of the likelihood function, differentiating
the log-likelihood function log /(i, o?) with respect to ¢ and
o2, the first derivatives should be equal to zero, i.e.,

n

dlogl(u, o) 1
T CATH=0

i=1

dlog l(u, o?) nl 1 v« 5

T T T3gE t 3gr L =0
i=1

Let /1 and &2 be the solution which satisfies the above two

equations.
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Since E(X) = p, the maximum likelihood estimator of y, X,

is an unbiased estimator.

We have checked that X is efficient and consistent.

n—

1 .
However, because of E(S**?) = o? # o as shown in

Section 7.3, the maximum likelihood estimator of o2, S**2,

is not an unbiased estimator.

We have checked that S**2 is inefficient but consistent.
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