

The partial derivative of $f(X; \sigma^2)$ with respect to σ^2 is:

$$\frac{\partial \log f(X; \sigma^2)}{\partial \sigma^2} = -\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4}(X - \mu)^2.$$

The 2nd partial derivative of $f(X; \sigma^2)$ with respect to σ^2 is:

$$\frac{\partial^2 \log f(X; \sigma^2)}{\partial (\sigma^2)^2} = \frac{1}{2\sigma^4} - \frac{1}{\sigma^6}(X - \mu)^2.$$

The Cramer-Rao inequality in this case is written as:

$$V(S^2) \geq \frac{1}{-nE\left(\frac{1}{2\sigma^4} - \frac{1}{\sigma^6}(X - \mu)^2\right)} = \frac{2\sigma^4}{n}. \dots \dots \dots \text{(B)}$$

303

From (A) and (B), variance of S^2 is not equal to the lower bound of Cramer-Rao inequality, i.e., $V(S^2) = \frac{2\sigma^4}{n-1} > \frac{2\sigma^4}{n}$.

Therefore, we can conclude that the sample unbiased variance S^2 is not an efficient estimator of σ^2 .

304

Utilizing Theorem on p.134, when $E(X_i) = \mu$ and $V(X_i) = \sigma^2$ for all i , we have: $E(\hat{\mu}) = \mu \sum_{i=1}^n a_i$ and $V(\hat{\mu}) = \sigma^2 \sum_{i=1}^n a_i^2$.

Since $\hat{\mu}$ is linear in X_i , $\hat{\mu}$ is called a **linear estimator** (線形推定量) of μ .

In order for $\hat{\mu}$ to be unbiased, we need to have the condition: $E(\hat{\mu}) = \mu \sum_{i=1}^n a_i = \mu$.

Example 1.14: Minimum Variance Linear Unbiased Estimator (最小分散線形不偏推定量): Suppose that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean μ and variance σ^2 (note that the normality assumption is excluded from Example 1.13).

Consider the following linear estimator: $\hat{\mu} = \sum_{i=1}^n a_i X_i$.

Then, we want to show $\hat{\mu}$ (i.e., \bar{X}) is a **minimum variance linear unbiased estimator** if $a_i = \frac{1}{n}$ for all i , i.e., if $\hat{\mu} = \bar{X}$.

305

306

That is, if $\sum_{i=1}^n a_i = 1$ is satisfied, $\hat{\mu}$ gives us a **linear unbiased estimator** (線形不偏推定量).

Thus, as mentioned in Example 1.12 of Section 7.2, there are numerous unbiased estimators.

The variance of $\hat{\mu}$ is given by $\sigma^2 \sum_{i=1}^n a_i^2$.

307

We obtain the value of a_i which minimizes $\sum_{i=1}^n a_i^2$ with the constraint $\sum_{i=1}^n a_i = 1$.

Construct the Lagrange function as follows:

$$L = \frac{1}{2} \sum_{i=1}^n a_i^2 + \lambda(1 - \sum_{i=1}^n a_i),$$

where λ denotes the Lagrange multiplier.

The $\frac{1}{2}$ in the first term makes computation easier.

308

For minimization, the partial derivatives of L with respect to a_i and λ are equal to zero, i.e.,

$$\begin{aligned}\frac{\partial L}{\partial a_i} &= a_i - \lambda = 0, \quad i = 1, 2, \dots, n, \\ \frac{\partial L}{\partial \lambda} &= 1 - \sum_{i=1}^n a_i = 0.\end{aligned}$$

Solving the above equations, $a_i = \lambda = \frac{1}{n}$ is obtained.

When $a_i = \frac{1}{n}$ for all i , $\hat{\mu}$ has minimum variance in a class of linear unbiased estimators.

\bar{X} is a **minimum variance linear unbiased estimator**.

309

The **minimum variance linear unbiased estimator** is different from the **efficient estimator**.

The former does not require the normality assumption.

The latter gives us the unbiased estimator which variance is equal to the Cramer-Rao lower bound, which is not restricted to a class of the linear unbiased estimators.

Under normality assumption, the linear unbiased minimum variance estimator leads to the efficient estimator.

Note that the efficient estimator does not necessarily exist.

310

Consistency (一致性): Let $\hat{\theta}_n$ be an estimator of θ .

Suppose that for any $\epsilon > 0$ we have the following:

$$P(|\hat{\theta}_n - \theta| \geq \epsilon) \rightarrow 0, \quad \text{as } n \rightarrow \infty,$$

which implies that $\hat{\theta} \rightarrow \theta$ as $n \rightarrow \infty$.

We say that $\hat{\theta}_n$ is a **consistent estimator (一致推定量)** of θ .

311

Example 1.15: Suppose that X_1, X_2, \dots, X_n are mutually independently and identically distributed with mean μ and variance σ^2 .

Assume that σ^2 is known.

Then, it is shown that \bar{X} is a consistent estimator of μ .

For RV X , Chebyshev's inequality is given by:

$$P(|X - E(X)| \geq \epsilon) \leq \frac{V(X)}{\epsilon^2}.$$

312

Here, replacing X by \bar{X} , we obtain $E(\bar{X})$ and $V(\bar{X})$ as follows:

$$E(\bar{X}) = \mu, \quad V(\bar{X}) = \frac{\sigma^2}{n},$$

because $E(X_i) = \mu$ and $V(X_i) = \sigma^2 < \infty$ for all i .

Then, when $n \rightarrow \infty$, we obtain the following result:

$$P(|\bar{X} - \mu| \geq \epsilon) \leq \frac{\sigma^2}{n\epsilon^2} \rightarrow 0,$$

which implies that $\bar{X} \rightarrow \mu$ as $n \rightarrow \infty$.

Therefore, \bar{X} is a consistent estimator of μ .

313

Summary:

When the distribution of X_i is **not** assumed for all i , \bar{X} is an **minimum variance linear unbiased and consistent estimator** of μ .

When the distribution of X_i is assumed to be **normal** for all i , \bar{X} leads to an **efficient and consistent estimator** of μ .

314

Example 1.16a: Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

Consider $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, which is an unbiased estimator of σ^2 .

We obtain the following Chebyshev's inequality:

$$P(|S^2 - \sigma^2| \geq \epsilon) \leq \frac{E((S^2 - \sigma^2)^2)}{\epsilon^2}.$$

We compute $E((S^2 - \sigma^2)^2) \equiv V(S^2)$.

315

$$U = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

$$E(U) = n-1 \text{ and } V(U) = 2(n-1).$$

$$V(U) = V\left(\frac{(n-1)S^2}{\sigma^2}\right) = 2(n-1)$$

$$\frac{(n-1)^2}{\sigma^4} V(S^2) = 2(n-1)$$

$$V(S^2) = \frac{2\sigma^2}{n-1}$$

$$P(|S^2 - \sigma^2| \geq \epsilon) \leq \frac{E((S^2 - \sigma^2)^2)}{\epsilon^2} = \frac{2\sigma^2}{(n-1)\epsilon^2} \rightarrow 0,$$

which implies that $S^2 \rightarrow \sigma^2$ as $n \rightarrow \infty$.

Therefore, S^2 is a consistent estimator of σ^2 .

316

Define $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ as an estimator σ^2 .

From $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, we obtain $E\left(\frac{(n-1)S^2}{\sigma^2}\right) = n-1$ and $V\left(\frac{(n-1)S^2}{\sigma^2}\right) = 2(n-1)$.

Therefore, $E(S^2) = \sigma^2$ and $V(S^2) = \frac{2\sigma^4}{n-1}$ can be derived.

Example 1.16b: Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

Consider $S^{**2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$, which is an estimate of σ^2 .

We obtain the following Chebyshev's inequality:

$$P(|S^{**2} - \sigma^2| \geq \epsilon) \leq \frac{E((S^{**2} - \sigma^2)^2)}{\epsilon^2}.$$

We compute $E((S^{**2} - \sigma^2)^2)$.

317

318

Using $S^{**2} = \frac{n-1}{n} S^2$, we have the following:

$$\begin{aligned} E((S^{**2} - \sigma^2)^2) &= E\left(\left(\frac{n-1}{n} S^2 - \sigma^2\right)^2\right) \\ &= E\left(\left(\frac{n-1}{n}(S^2 - \sigma^2) - \frac{\sigma^2}{n}\right)^2\right) \\ &= \frac{(n-1)^2}{n^2} E((S^2 - \sigma^2)^2) + \frac{\sigma^4}{n^2} \\ &= \frac{(n-1)^2}{n^2} V(S^2) + \frac{\sigma^4}{n^2} = \frac{(2n-1)}{n^2} \sigma^4. \end{aligned}$$

Therefore, as $n \rightarrow \infty$, we obtain:

$$P(|S^{**2} - \sigma^2| \geq \epsilon) \leq \frac{1}{\epsilon^2} \frac{(2n-1)}{n^2} \sigma^4 \rightarrow 0.$$

Because $S^{**2} \rightarrow \sigma^2$, S^{**2} is a consistent estimator of σ^2 .

S^{**2} is biased (see Section 7.3, p.273), but is consistent.

319

320

7.5 Estimation Methods

- Maximum Likelihood Estimation Method (最尤推定量)
- Least Squares Estimation Method (最小二乗法)
- Method of Moment (積率法)

321

7.5.1 Maximum Likelihood Estimator (最尤推定量)

In Section 7.4, the properties of the estimators \bar{X} and S^2 are discussed.

It is shown that \bar{X} is an unbiased, efficient and consistent estimator of μ under normality assumption and that S^2 is an unbiased and consistent estimator of σ^2 .

The parameter θ is included in the underlying distribution $f(x; \theta)$.

322

$\theta = (\mu, \sigma^2)$ in the case of the normal distribution.

Now, in more general cases, we want to consider how to estimate θ .

The **maximum likelihood estimator** (最尤推定量) gives us one of the solutions.

Let X_1, X_2, \dots, X_n be mutually independently and identically distributed random samples.

X_i has the probability density function $f(x; \theta)$.

323

The joint density function of X_1, X_2, \dots, X_n is given by:

$$f(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta),$$

where θ denotes the unknown parameter.

Given the actually observed data x_1, x_2, \dots, x_n , the joint density $f(x_1, x_2, \dots, x_n; \theta)$ is regarded as a function of θ , i.e.,

$$l(\theta) = l(\theta; x) = l(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta).$$

$l(\theta)$ is called the **likelihood function** (尤度関数).

324

Let $\hat{\theta}_n$ be the θ which maximizes the likelihood function.

Given data x_1, x_2, \dots, x_n , $\hat{\theta}_n(x_1, x_2, \dots, x_n)$ is called the **maximum likelihood estimate (MLE, 最尤推定值)**.

Replacing x_1, x_2, \dots, x_n by X_1, X_2, \dots, X_n , $\hat{\theta}_n = \hat{\theta}_n(X_1, X_2, \dots, X_n)$ is called the **maximum likelihood estimator (MLE, 最尤推定量)**.

That is, solving the following equation:

$$\frac{\partial l(\theta)}{\partial \theta} = 0,$$

MLE $\hat{\theta}_n \equiv \hat{\theta}_n(X_1, X_2, \dots, X_n)$ is obtained.

325

Example 1.17a: Suppose that X_1, X_2, \dots, X_n are mutually independently, identically and normally distributed with mean μ and variance σ^2 .

We derive the maximum likelihood estimators of μ and σ^2 .

The joint density (or the likelihood function) of X_1, X_2, \dots, X_n is:

$$f(x_1, x_2, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2)$$

326

$$\begin{aligned}
&= \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right) \\
&= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right) \\
&= l(\mu, \sigma^2).
\end{aligned}$$

The logarithm of the likelihood function is given by:

$$\log l(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2,$$

which is called the **log-likelihood function** (対数尤度関数).

327

For maximization of the likelihood function, differentiating the log-likelihood function $\log l(\mu, \sigma^2)$ with respect to μ and σ^2 , the first derivatives should be equal to zero, i.e.,

$$\begin{aligned}
\frac{\partial \log l(\mu, \sigma^2)}{\partial \mu} &= \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0, \\
\frac{\partial \log l(\mu, \sigma^2)}{\partial \sigma^2} &= -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0.
\end{aligned}$$

Let $\hat{\mu}$ and $\hat{\sigma}^2$ be the solution which satisfies the above two equations.

328

Since $E(\bar{X}) = \mu$, the maximum likelihood estimator of μ , \bar{X} , is an unbiased estimator.

We have checked that \bar{X} is efficient and consistent.

However, because of $E(S^{**2}) = \frac{n-1}{n}\sigma^2 \neq \sigma^2$ as shown in Section 7.3, the maximum likelihood estimator of σ^2 , S^{**2} , is not an unbiased estimator.

We have checked that S^{**2} is inefficient but consistent.

329

330