Exercises and Answers to Chapter 1

The continuous type of random variable X has the following density function:

a— x, f0<x<a,
fo) =
0, otherwise.
Answer the following questions.
(1) Find a.
(2) Obtain mean and variance of X.

(3) When Y = X?, derive the density function of Y.
[Answer]

(1) From the property of the density function, i.e., f f(x) dx = 1, we need to have:

ff(x) dx = fu(a—x) dx = [ax— lxz
0 2

Therefore, a = V2is obtained, taking into account a > 0.

a 1 5
=-d=1.
261

0

(2) The definitions of mean and variance are given by: E(X) = f xf(x)dx and

V(X) = f (x — w)* f(x) dx, where u = E(X). Therefore, mean of X is:

_ _ B I T T A
E(X)—fxf(x)dx—fowx(a x)dx—[zax 3x ]0—641

==  «— g= \2is substituted.

Variance of X is:

V(X):f(x—,u)zf(x)dx:fxzf(x)dx—uzzfxz(a—x)dx—,uz
0

2
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(3) Let f(x) be the density function of X and F(x) be the distribution function of X.
And let g(y) be the density function of Y and G(y) be the distribution function
of Y. Using Y = X?, we obtain:

G)=P(Y <y)=PX*<y)=P(—\y <X < Vy) = F(\y) = F(=}y)
=F(\y) « F(-+y =0.

Moreover, from the relationship between the density and the distribution func-

tions, we obtain the following:

dG() _ dF(+/y) _ dF() d+/y

80) = dy dy dx dy X= Y
1 1 1
:F’ _— = _— = S
(X)z\/y f(X)ZW f(\/?)z\/y
:(\/5—\/?)—215, for0 <y <?2.

The range of y is obtained as: 0 < x < V2=0<x*<2=0<y<?2.

The continuous type of random variable X has the following density function:

|
f(x)—ﬁe .

Answer the following questions.

(1) Compute mean and variance of X.
(2) When Y = X2, compute mean and variance of Y.

(3) When Z = ¢¥, obtain mean and variance of Z.
[Answer]

(1) The definitions of mean and variance are: E(X) = f xf(x)dx and V(X) =

f (x — p)* f(x) dx, where i = E(X). Therefore, mean of X is:

E(X) = fxf(x) dx = [: x\/%e—éxz dx = _\/% [e_%xz]iooo 0.



de 2" 1.2

In the third equality, we utilize: = —xe 2",

X

Variance of X is:

V(X) = f(x — W) f(x) dx = fx2f(x) dx —u? = fm X2 \/1_6—% dx — 12

[ L 10 i + foo L -t dx—p? =1
=|-x e e -u =1
\/ﬂ —00 —00 \/E

In the fourth equality, the following formula is used.

b b
f W (0g(x) dx = [h(x)g()] - f h(x)g'(x) dx,

where g(x) = x and h'(x) = x\/#zfﬂe‘%)‘2 are set.

And in the first term of the fourth equality, we use:

1
lim x >

X—+00 \/ﬂ

In the second term of the fourth equality, we utilize the property that the inte-

gration of the density function is equal to one.

(2) When Y = X2, mean of Y is:
E(Y) = E(X*) = V(X) -2 = |

From (1), note that V(X) = 1 and u, = E(X) =0

Variance of Y is:

V(Y)=E(Y -u)* «— p=E¥)=1

=E(Y?) -y = EXY) -y = fx—e 2 dx — 1

(oe) 1
3 Lx2
= X x——e 2" dx -2
f:oo V27T Y

| T I
— [_x3 P

© 1 1.2

+3 x? e dx — 1

V2r —oo Im V2r !
=3EXY) -y, — BX)=1p=1

=2



In the sixth equality, the following formula on integration is utilized

b b
fhummm:wmmﬁ—fhmﬂmm

where g(x) = x* and //(x) = x—;

1.2
N 2% are set.
T

In the first term of the sixth equality, we use:

lim x3—e ¥ 2,

X—+00 27T

(3) For Z = €%, mean of Z is:

E(Z)_E(e)—f e—e Ei dx—f = e 1@29 4

=f 30 1)2+2 dx = éf —e_%(x—l)2 dx = e?.
—00 V27T -0 V27T

In the sixth equality, ——e"2“""" is a normal distribution with mean one and
2m

variance one, and accordingly its integration is equal to one

Variance of Z is:

V(@Z)=EBZ-p.) — w=E2Z)=e

* 1
=mﬁ%£=mﬂrﬁ=feh

%0 \/Zr

3 (0 =4x) ~L-22+2 2
f ——e 2 dx — 2 dx —u
\/27r : f V2 :

2
= ezf —e_?(x_z) dx—ul=e* —e.
—00 V27T

1.2
—ix _ 2
e dx — u:

The eighth equality comes from the facts that ¢ 202" is a normal distri-
2n
bution with mean two and variance one and that its integration is equal to one

The continuous type of random variable X has the following density function

1 .
—e 1, if 0 < x,
f =34
0,

otherwise.
Answer the following questions.



(1) Compute mean and variance of X.

(2) Derive the moment-generating function of X.

(3) Let Xi, X5, ---, X, be the random variables, which are mutually independently

distributed and have the density function shown above. Prove that the density
function of ¥ = X; + X, + - -+ + X,, is given by the chi-square distribution with
2n degrees of freedom when A = 2. Note that the chi-square distribution with m

degrees of freedom is given by:

if x > 0,

otherwise.

[Answer]

(1) Mean of X is:

<1 .
E(X) = fxf(x) dx :f x—e 1dx
o A
= [—xe‘%]m + f e 1 dx = [—/le_f]oo = A
0 0 0
In the third equality, the following formula is used:

b b
f W (0g(x) dx = [(0g(0)], - f h(x)g'(x) dx.

1 .
where g(x) = x and /h'(x) = Ze‘i are set.

And we utilize:

Variance of X is:

VOO = [ di= [2fode-w o u=EX =2
= f“ x21e_f dx — % = [—xz.e_?r]Oo + 2[00 xe 1 dx — ui®
o A 0 0
x ] © 1 x
= [—xze_i] + 2/1f x—e 1 dx —p?
0 o A
=2EX)-1® «— u=EX)=21

=207 - A% = A%



2)

3)

In the third equality, we utilize:

b b
[ e ax= e - [ g ax

1 _:
where g(x) = x? and /' (x) = ze_i.

In the sixth equality, the following formulas are used:

lim X’ 1 =0, u=EX)= f xe™ 1 dx.
0

X—00

The moment-generating function of X is:

00 1 N 00 ]
$(6) = B(e™) = f " f(x) dx = f et dx = f Zem 0 gy
0 0

1A (o1 1
=4f (= —@e T dy = —
1/A-6J, 4 -0

1
In the last equality, since (/—1 - Q)e_(/]’l_g)x is a density function, its integration is
1
one. A in f(x) is replaced by rin 6.

We want to show that the moment-generating function of Y is equivalent to that

of a chi-square distribution with 2n degrees of freedom.

Because Xi, X5, -+, X, are mutually independently distributed, the moment-

generating function of X;, ¢;(0), is:

1
¢i(0) = T2~ #(0),

which corresponds to the case 4 = 2 of (2).

For A = 2, the moment-generating function of ¥ = X} + X, +--- + X,,, ¢,(6), is:

¢y(9) — E(€9Y) — E(eH(X1+X2+~~-+X,1)) — E(egxl )E(eHXz) . E(eGXn)

= 01O020) -+ 6,(0) = (#(0)' = (5 _129)" = (5 - 29)22"-

Therefore, the moment-generating function of Y is:

2n

5,0 = (—5,)"

6



A chi-square distribution with m degrees of freedom is given by:

m_q X

x2e"2, forx>0.

1) = 357,

The moment-generating function of the above density function, ¢,2(6), is:

© 1 m X
¢,2(0) = E(e"™) = f e ———x?"le77 dx
. 0 2:T(3)

:foo ml K3 1em3(-20x 4

o 2:I(3)

_f"" : ( - )l;_le_éy L
~Jo 242y \1-26 1-26

m_ . m
1-20] 1-260J, 23r(z) 1-26

In the fourth equality, use y = (1 —26)x. In the sixth equality, since the function

in the integration corresponds to the chi-square distribution with m degrees of
freedom, the integration is one. Thus, ¢,(6) is equivalent to ¢,2(6) for m = 2n.
That is, ¢,(6) is the moment-generating function of a chi square distribution

with 2n degrees of freedom. Therefore, Y ~ y*(2n).

The continuous type of random variable X has the following density function:

1, ifO0<x<l,
fx) =

0, otherwise.

Answer the following questions.

(1) Compute mean and variance of X.

(2) When Y = -2log X, derive the moment-generating function of Y. Note that the

log represents the natural logarithm (i.e., y = —2log x is equivalent to x = e ).

(3) Let Y, and Y, be the random variables which have the density function obtained
in (2). Suppose that Y; is independent of ¥,. When Z = Y; + Y,, compute the

density function of Z.



[Answer]

(1) Mean of X is:

! 1, 1
E(X):~[xf(x)dx:f0 xdx:[ix in.

Variance of X is:

1
V) = f(x — @’ f(x) dx = fxzf(x) dr—4F  — p=EX)=;
1 1, 1 /1y 1
:f(; Xde_u2:[§X3]o_“2:§_(z) - 12°

(2) For Y = —2log X, we obtain the moment-generating function of Y, ¢,(6).

6,(6) = B(e”) = B(e™"*¥) = E(X ) = f X f(x) dx

! 1 : 1
—26 1-26
= dx=|— = —.
jo‘ * * [1 —26" L 1-26

(3) Let Y, and Y, be the random variables which have the density function obtained
from (2). And, assume that Y; is independent of Y,. For Z = Y| + Y,, we want

to have the density function of Z.

The moment-generating function of Z, ¢,(0), is:

8:(6) = E(e") = E@""1"7) = E(e"E("™) = (#,(6))

1 \2 1\
_(1—29) _(1—29) ’
which is equivalent to the moment-generating function of the chi square distri-
bution with 4 degrees of freedom. Therefore, Z ~ y?(4). Note that the chi-
square density function with n degrees of freedom is given by:
n 1 x%_l
flo =12 1G)
0, otherwise.

X
e ?, for x > 0,

The moment-generating function ¢(6) is:

1
¢(0) = (1_—20) :

[STE



The continuous type of random variable X has the following density function:
|
f =1 2TG)

0, otherwise.

e 2, if x>0,

Answer the following questions. I'(a) is called the gamma function, defined as:

I'(a) = f xle™ dx.
0

(1) What are mean and variance of X?

(2) Compute the moment-generating function of X.
[Answer]

(1) For mean:

n+2 00
_ — F( i ) 12 2 nzzx%_le %dx
2= T(3) Jo T(%H)

1
Note that I'(s + 1) = sI'(s), I'(1) = 1, and F(E) = n. Using n’ = n + 2, from

the property of the density function, we have:

00 00 1
dx = ,
[ rwa= | 7

which is utilized in the fifth equality.

oy _x
27 TxT e 2 dx =1,

For variance, from V(X) = E(X?) — u*> we compute E(X?) as follows:

o0 0 1 n n__ X
E(X?) = f X f(x) dx = f X’ —272x2" le™2 dx
oo o I

:f 1 _n nt+4 ]e %dx
0 1"(5)

n+4 o0
2‘h ') Jo Iﬂ(&)

= n+2n)f G T xET e™2 dx = n(n + 2),

9



where n’ = n + 4 is set. Therefore, V(X) = n(n + 2) — n* = 2n is obtained.

(2) The moment-generating function of X is:

1

X

#(0) = E(e™) = f ) e f(x) dx = f ) e
0

—00

X
2%1“(5) exp(—i) dx

n 1
x2! exp(—i(l - 29)x) dx

y ! 1 1
( ) Xp(= N T &

(SIS

v eXp(—%y) dy = (1_;20) :

d
Use y = (1 — 20)x in the fifth equality. Note that Tx = (1 —260)". In the
Y
seventh equality, the integration corresponds to the chi-square distribution with

n degrees of freedom.

@ The continuous type of random variables X and Y are mutually independent and
assumed to be X ~ N(0,1) and Y ~ N(O, 1). Define U = X/Y. Answer the following

questions. When X ~ N(0, 1), the density function of X is represented as:

|
fx) = \/—2_716 .

(1) Derive the density function of U.

(2) Prove that the first moment of U does not exist.
[Answer]

(1) The density of U is obtained as follows. The densities of X and Y are:

1
f(x) = exp(—=x%), —o0o < x < 0o,
V2n 2
1 1
g(y) = —=exp(-5)’), —oo<y<oo.
V2r 2

10



Since X is independent of Y, the joint density of X and Y is:

1 1 1 1
h(x,y) = f(x)g(y) = o exp(—5x2>\/—2_ﬂ exp(—§y2>

1 1
=5 exp(—i(x2 +3%).

. X . . .
Using u = — and v = y, the transformation of the variables is performed. For
y

x = uv and y = v, we have the Jacobian:

o bx

J:(?u(?v:vu
Y o 1]
ou Ov

Using transformation of variables, the joint density of U and V, s(u, v) is given
by:
s(u,v) = h(uv, v)|J| = 7 exp(—zv (1 + u))|v|.

T

The marginal density of U is:

p(u) = f s(u,v) dv = 1 f ) Ivlexp(—lv2(1+u2)) dv
27 J o 2

1 1
== f vexp(—v*(1 +u?)) dv
T Jo 2
1 1 1L, ol 1
=—|- —v(1 + =—
|l 1+ u? exp( ZV( u) oo (L +u?)

which corresponds to Cauchy distribution.

(2) We prove that the first moment of U is infinity, i.e.,

0 1
E(U):fuf(u)du:j:mumdu

<11
:f ——dx «— x=1+u’isused.
| 2mx

1 | °° dlogx 1
=|—logx — =
2 g | dx X

= 00,

For —oo < u < oo, the range of x = 1 + u? is give by 1 < x < oo.

11



The continuous type of random variables has the following joint density func-

tion:
X+, if0<x<landO<y<1,

flx,y) =

0, otherwise.

Answer the following questions.

(1) Compute the expectation of XY.
(2) Obtain the correlation coefficient between X and Y.

(3) What is the marginal density function of X?
[Answer]

(1) The expectation of XY is:

E(XY)—ffxyf(xy)dxdy ffxy(x+y)dxdy
1
=f0[3yx +2yx2] dy = f( y+ y)dy

1

éf -3
0

12
=|=y"+
6)’

(2) We want to obtain the correlation coefficient between X and Y, which is repre-
sented as: p = Cov(X, Y)/ VV(X)V(Y). Therefore, E(X), E(Y), V(X), V(Y) and
Cov(X, Y) have to be computed.

E(X) = ffxf(xy)dxdy ffx(x+y)dxdy
_f 1
~Jo

gx +2yx] dy = f( + =y)dy
1 1
=[—y+—y2

g
3774

E(X) is:

o 12

12



In the case where x and y are exchangeable, the functional form of f(x,y) is

unchanged. Therefore, E(Y) is:

7
E(Y) =EX) = I

For V(X),

7
VX)=E((X-p?) «— u=BEX) = =

1 1
=B(X*) -y’ = f f X f(x,y) dx dy — i
0 0

1 Al 1
:ffxz(x+y)dxdy—,uz:f
0 Jo 0

1 4 1 3 1 2
X 3yx ]0 y — U

1

1
1 1 11
— - dv =2 == 232 2
f0(4+3y)y w=|prgy| o
_5 (7)2_11
12 \127 7 1447
For V(Y),
11
V) =VX)= —.
(Y) (X) a4

For Cov(X, Y),

Cov(X, ¥) = E((X — u)(¥ — 1)) = E(XY) = ppa,
1 7 7 1

371212 144

where

7 7
m=BX) ==,y =EY)= .

Therefore, p is:

_ Cov(X,Y) _ —1/144 1
p= WOV Val/idhai/ias 1

(3) The marginal density function of X, f,(x), is:

1,

+
Xy 2)’

1
i) = f FCxy) dy = fo (x+y) dy =
forO<x< 1.

13



The discrete type of random variable X has the following density function:

—/l/lx
fx) = ; x=0,1,2,---.

Answer the following questions.

(1) Prove Zf(x) = 1.
(2) Compute the moment-generating function of X.

(3) From the moment-generating function, obtain mean and variance of X.
[Answer]

(1) We can show Zf(x) =1 as:

x=0
[ee) [ee) (o8]
A4 A
LIS U S
x=0 x=0 X x=0 X

Note that e* = Z it , because we have f®(x) = e* for f(x) = e*. As shown in

Appendix 1.3, the formula of Taylor series expansion is:
- 1
flx) = ; PLAKCOICEEDE

The Taylor series expansion around x = 0 is:

=Y Loe =Y L=y L
k=0 " k=0 " k=0

Here, replace x by A and k by x.

(2) The moment-generating function of X is:

$(0) = E(e™) = Z e (x) = Z ox -/1 _ Z 2 (eg/l)x

x=0 x=0

e H x L
e texp(e’d) Z exp(—egxl)Q = e texp(e’) Z e
x=0 x! =0 x!

exp(-A) exp(e”d) = exp(A(e” - 1)).
Note that I = exp(e’A).

14



(3) Based on the moment-generating function, we obtain mean and variance of X.

For mean, because of ¢(f) = exp(/l(ee — 1)), &) = e’ exp(/l(eg — 1)) and
E(X) = ¢’(0), we obtain:

E(X) = ¢'(0) = A.

For variance, from V(X) = E(X?) — (E(X))*, we obtain E(X?). Note that E(X?) =
¢"(0) and ¢"(6) = (1 + 1e”)e” exp(A(e” - 1)). Therefore,

V(X) = E(X?) - (E(X))* = ¢”(0) = (¢'(0))* = (1 + DA - 2> = A.

@ X1, X5, - -+, X,, are mutually independently and normally distributed with mean

u and variance o2, where the density function is given by:

— 503 (=)’

f(x) =

e
2no?

Then, answer the following questions.
(1) Obtain the maximum likelihood estimators of mean u and variance 0.

(2) Check whether the maximum likelihood estimator of o is unbiased. If it is
not unbiased, obtain an unbiased estimator of ¢?. (Hint: use the maximum

likelihood estimator.)

(3) We want to test the null hypothesis Hy : p = po by the likelihood ratio test.

Obtain the test statistic and explain the testing procedure.
[Answer]

(1) The joint density is:

f(-xla-xZa e a'xl’l;/l’ 0-2) = l_[f(xi;/'l’ 0-2)
i=1

! 1
-1 We"p(‘ﬁ(’“ "“‘)2)
= 2n0*) " exp (—2%2 Z(x,- - ,1)2) = l(u, o).
i=1

15



Taking the logarithm, we have:
1 n
log I(u, ) = —g log(27) — glong) s ;m — )

The derivatives of the log-likelihood function log I(u, o) with respect to u and

o are set to be zero.

0logl
Og_wz_z(xl ) =0,

Ologlpno™) __n 1 LS =0

002 202 20* —

Solving the two equations, we have the solution of (4, o%), denoted by (j1, 62):

ﬁ:lixi:i

i=1

S

L, 1< 1 < _
== -t = > (-0
n i=1 n i=1

Therefore, the maximum likelihood estimators of u and o2, (@, &?), are as fol-

lows:
n

_ 1 _
X, S$*2-= - Z(X,- ~X)

i=1

(2) Take the expectation to check whether S **? is unbiased.
B(S"?) = Z(X X7) Z(X X7)
= —E(le«x,- - - (X - pY)
= —E(an]«xi ~ 1 =2 = X ~ ) + (X = p)?)
—E(i(xi — = 2X - p) i(xi — ) +n(X - py’)
Z(X W’ = 2n(X = + n(X — )

i=1

16



- %E(;(X,- — w)* — n(X - #)2)
1_/x 1o~
- ZE(;(Xi ~ 1) = ~E(n(X - uy’)
1 ¢ v
= Zl B((X; — 1) = E(X - )
, 1 , n-1

=0 " ——-0" = 0'29&0'2.
n n

Therefore, S **? is not unbiased. Based on S **2, we obtain the unbiased estimator
of 2. Multiplying n/(n — 1) on both sides of E(S **?) = o*(n — 1)/n, we obtain:

n

n—1

Therefore, the unbiased estimator of o2 is:

n 1 i _
— 2= Xi—XZ:Sz.
n—I;( )

n-—1

(3) The likelihood ratio is defined as:

max [(uo, 0'2)
0—2

_ l(/'t()’ 52)

max I(u, 0'2) B I(a,62)
U0

Since the number of restriction is one, we have:
—2logd — ¥*(1).
(1, o) is given by:
1 n
l(u,0%) = 2rnc?) ™" exp (—27_2 Z(Xi - ,U)ZJ :

i=1

Taking the logarithm, log l(u, 0%) is:
n_ I n 2 1 < 2
log I(u,0%) = =3 log(27) — > log(”) = 5— ;m -

17



On the numerator, under the restriction u = g, log (1, %) is maximized with

respect to o2 as follows:

dloglo,c® nl 1 ¢ )
T =30 s i =0
i=1

This solution of o is 02, which is represented as:
= Zn:(x- — o)’
n i=1 l .
Then, I(11, o) is:
_ " 1 n N
Ko, T°) = (2m02) ™ exp [_ﬁ ;(Xi - #0)2) = (2r0) ™ exp (_g) '

On the denominator, from the question (1), we have:

p=iyn - %Z](xi—ﬁ)z.

i=1

Therefore, ({1, 572) is:

1 « n
A AD A2\—n/2 A2 A2\—1]2
I(1,67) = 2n6~) exp [—2A2 i; (x; — f0) ] = 2n67) exp (——2).

The likelihood ratio is:

max [(u, 02)
0-2

0T _ Qi expnf2) (@
max l(u,02) (1,67 2ré2) "2 exp(-n/2)  \6?
w0

As n goes to infinity, we obtain:

—2log A = n(loga? —log &) ~ x*(1).

When —2logd > x2(1), the null hypothesis Hy : u = o is rejected by the
significance level a, where y2(1) denotes the 100 x « percent point of the Chi-

square distribution with one degree of freedom.

Answer the following questions.

18



(1) The discrete type of random variable X is assumed to be Bernoulli. The Bernoulli

distribution is given by:
fo=pA-p'~,  x=01

Let X;, X5, - -+ ,X,, be random variables drawn from the Bernoulli trials. Com-

pute the maximum likelihood estimator of p.

(2) Let Y be arandom variable from a binomial distribution, denoted by f(y), which

is represented as:

fOo) =,Cp°(1 = p)"?, y=0,1,2,---,n.

Then, prove that Y/n goes to p as n is large.
(3) For the random variable Y in the question (2), Let us define:

Y—-np
Vnp( = p)

Then, Z, goes to a standard normal distribution as n is large.

Z,

(4) The continuous type of random variable X has the following density function:

1
fOo =1 2TE)

0, otherwise.

n_ X .
x27le2, if x>0,

where I'(a) denotes the Gamma function, i.e.,

F(a):f xle™ dx.
0

Then, show that X/n approaches one whenn — oo.
[Answer]

(1) When X is a Bernoulli random variable, the probability function of X is given
by:
fsp)=pA-p)'™,  x=0,1.

19



)

The joint probability function of Xi, X5, - - - , X, is:

feox,xsp) = | [ fesp = [ pia-p)'
i=1 i=1
= p= (1 = p)"H% = (p).

Take the logarithm of /(p).

logl(p) = (), x)log(p) + (n = »_ x) log(1 = p).

The derivative of the log-likelihood function log /(p) with respect to p is set to
be zero.

dlogl(p) _ Xix _ n— X _ DX —Nnp _
dp P l-p p(1-p)

Solving the above equation, we have:

i=1

Therefore, the maximum likelihood estimator of p is:

p:%Zx,.:)_(.

Mean and variance of Y are:
E(Y) = np, V() =np(l - p).
Therefore, we have:

Y. 1 Y 1 -
E(-)=-EM)=p,  V()==V()= P - 12

Chebyshev’s inequality indicates that for a random variable X and g(x) > 0 we

have:
E(g(X))
r

P(g(X) 2 k) <
where k > 0.

20



Here, when g(X) = (X — E(X))? and k = €2 are set, we can rewrite as:

V(X)

s
62

PJX-EX)| > ¢) <
where € > 0.

Y
Replacing X by —, we apply Chebyshev’s inequality.
n

Y Y V()
P(=-E(-)| 2 ) < —2=.
n n €
Thatis,asn — oo,
Y 1-
PIE—pzo< 22D
n ne
Therefore, we obtain:
— _} p‘

n
(3) Let X;, X5, -+, X,, be Bernoulli random variables, where P(X; = x) = p*(1 —
p)!~forx =0,1. Define Y = X; + X, + --- + X,. Because Y has a binomial
distribution, Y/n is taken as the sample mean from X;, X5, - -+, X,,, i.e., Y/n =
(1/n) >7_, X;. Therefore, using E(Y/n) = p and V(Y/n) = p(1 — p)/n, by the

central limit theorem, as n — oo, we have:

Y —
_Ynmr no,
vp(l —p)/n
Moreover,
7 = Y-np  Y/n-p
" N =p) (= p)/n
Therefore,

Z, — N(Q,1).

(4) When X ~ x*(n), we have E(X) = n and V(X) = 2n. Therefore, E(X/n) = 1 and
V(X/n) =2/n.
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Apply Chebyshev’s inequality. Then, we have:

X
(%
e’

X X
P(|=—-E(-)lze) <
n n
where € > 0. That is, asn — oo, we have:
X 2
P(Z -1z < — — 0.
n ne
Therefore,

— — 1.
n

Consider n random variables X, X», - - -, X,,, which are mutually independently

and exponentially distributed. Note that the exponential distribution is given by:
f(x) = de™, x> 0.
Then, answer the following questions.

(1) Let A be the maximum likelihood estimator of A. Obtain A.

(2) When n is large enough, obtain mean and variance of .

[Answer]

(1) Since Xi, - -, X, are mutually independently and exponentially distributed, the

likelihood function /(1) is written as:
1) =] | =] [ et = aet2x,
i=1 i=1
The log-likelihood function is:

log (1) = nlog(A) — /lz X;.

i=1

We want the A which maximizes log /(). Solving the following equation:

dlogl(d) n <«
da 1 le .
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and replacing x; by X;, the maximum likelihood estimator of A, denoted by A,

is:
n
Z:l:] Xl ’

(2) Xy, X», -+, X,, are mutually independent. Let f(x;; 1) be the density function of

A=

X;. For the maximum likelihood estimator of A4, i.e., ;ln, asn — oo, we have

the following property:
Va(d, - ) — N(0,%(0),
where
1
a?(Q) = —.
g |( 1o (X5 1)
da

Therefore, we obtain o2(1). The expectation in o>(,,) is:

el -l |- o)

1 2 1
= —-ZEX)+EX? = —=
-5 — B0 +E(0) = .
where E(X) and E(X?) are:
1 2
EX) = - E(X?) = =.
0=~  BX)=3
Therefore, we have:
2 1 2
o) = — =4
B dlog f(X; )
da
As n is large, 1, approximately has the following distribution:
A A2
Ay ~ N, —).
n

Thus, as 7 goes to infinity, mean and variance are given by A and A°/n.
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The n random variables X;, X, - - -, X,, are mutually independently distributed

with mean y and variance o>. Consider the following two estimators of u:

—_ 1< - 1
X== ZX,., X=X +X,).

Then, answer the following questions.

(1) Is X unbiased? How about X2
(2) Which is more efficient, X or X?

(3) Examine whether X and X are consistent.
[Answer]

(1) We check whether X and X are unbiased.

BX) =BG Y X)= B X)= D EX) == u=p
i=1 i=1 i=1 i=1
E(X) = %(E(Xl) +E(X,)) = %w tp) = p

Thus, both are unbiased.

(2) We examine which is more efficient, X or X.

V) = V(> ZX)——V(ZX)— va_ Lye-C
i=1

- 1
V(X) = Z(V(X1)+V(X,,)) —(0' +0?) = %

Therefore, because of V(X) < V()?), X is more efficient than X when n > 2.

(3) We check if X and X are consistent. Apply Chebyshev’s inequality. For X,

P(X —EX)| > ) < Q

where € > 0. That is, when n — oo, we have:
2

— g
ne
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Therefore, we obtain:

Next, for X , we have:

V(X)

e’

P(X —E(X)| =€) <

where € > 0. That is, when n — oo, the following equation is obtained:

— o2
PIX-u>e)<— — 0.
2€?

X is a consistent estimator of u, but X is not consistent.

The 9 random samples:
21 23 32 20 36 27 26 28 30
which are obtained from the normal population N(u, o%). Then, answer the following

questions.

(1) Obtain the unbiased estimates of u and 0.
(2) Obtain both 90 and 95 percent confidence intervals for p.

(3) Test the null hypothesis Hy : u = 24 and the alternative hypothesis H; : u > 24
by the significance level 0.10. How about 0.05?

[Answer]

(1) The unbiased estimators of i and o, denoted by X and S2, are given by:

X = %Zx §? = ﬁg(&-—)_()z.

I N 2 1 < -2
x-;l X, s—n_ll;(xi—x).
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Therefore,

=3@1—mf+@3—mf+@2—mf+ao—ﬂf
+@6—2ﬂ2+@7—2ﬂ2+96—2n2+a8—2n2+@0—2nﬂ

1
:§(36+16+25+49+81+0+1+1+9):27.25.

(2) We obtain the confidence intervals of u. The following sample distribution is

utilized: .
X—-pu
~ t(n—1).
S/ ( )
Therefore, .
X—-pu

<tap(n-1)=1-a,

P
57+
where ?,2(n— 1) denotes the 100 X a/2 percent point of the ¢ distribution, which
is obtained given probability @ and n — 1 degrees of freedom. Therefore, we
have:
— S - S
PIX-t,p(n-1)—<u<X+t,p(n—1)—
(X = tapptn = 1) <k =D

Replacing X and S2 by X and s2, the 100 x (1 — @) percent confidence interval

):l—a.

of p is:
S S
X—typ(n—1)—,x+t,p(n—1)—).
(X = tap(n = 1) WARRLC G \/ﬁ)
Since X = 27, s> = 27.25,n = 9, t505(8) = 1.860 and #;,0,5(8) = 2.306, the 90

percent confidence interval of y is:

[27.25 [27.25
(27 - 1.860 5 27 + 1.860 T) = (23.76,30.24),

and the 95 percent confidence interval of p is:

[27.25 [27.25
(27 -2.306 5 27 +2.306 T) =(22.99,31.01).
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(3) We test the null hypothesis Hy : u = 24 and the alternative hypothesis H; : u >
24 by the significance levels 0.10 and 0.05. The distribution of X is:

X-u
n

S/ n

Therefore, under the null hypothesis Hy : u = uy, we obtain

~tn-1).

X = fo
S/\n

Note that u is replaced by uy. For the alternative hypothesis H; : u > uy, since

~tn-1).

we have:

P(X _“: > 1,(n - 1) = a,

S/ n

we reject the null hypothesis Hy : u = o by the significance level @ when we

have:
X — Ho

s/ \n
Substitute x = 27, §? = 27.25, Mo = 24, n =9, t510(8) = 1.397 and 7 o5(8) =

> t,(n—1).

1.860 into the above formula. Then, we obtain:
X — Ho 27 -24
s/ NZT25P9
Therefore, we reject the null hypothesis Hy : u = 24 by the significance level
a = 0.10. And we obtain:

= 1.724 > 14,10(8) = 1.397.

X—po  27-24

s/\n 27.25/9
Therefore, the null hypothesis Hy : u = 24 is accepted by the significance level
a = 0.05.

= 1.724 < 1505(8) = 1.860.

The 16 samples X;, X», - - -, X} are randomly drawn from the normal population
with mean p and known variance o> = 22. The sample average is given by X = 36.

Then, answer the following questions.

(1) Obtain the 95 percent confidence interval for p.

27



(2) Test the null hypothesis Hy : u = 35 and the alternative hypothesis H; : u =
36.5 by the significance level 0.05.

(3) Compute the power of the test in the above question (2).
[Answer]

(1) We obtain the 95 percent confidence interval of . The distribution of X is:

X—p

~ N(0, 1).
o/ v 0,1
Therefore, .
P2 <) = 1-a
o/~n| ’

where z,/» denotes the 100><% percent point, which is obtained given probability

«. Therefore,

P()_(—za/zi <pu< f+za/2£) =1-a.

Vi Vi
Replacing X by X, the 100(1 — a) percent confidence interval of y is:

_ o _ o
(x —Za2— =X T Za//Z_)-

Vn Vn
Substituting X = 36, 0> = 22, n = 16 and 7905 = 1.960, the 100 x (1 — a)

percent confidence interval of y is:

2 2
(36 = 1.960——, 36 + 1.960——) = (35.02, 36.98).
V16 V16

(2) We test the null hypothesis Hy : p = 35 and the alternative hypothesis H; : u =
36.5 by the significance level 0.05. The distribution of X is:

X-u

o/ \n

Under the null hypothesis Hy : u = o,

~ N(0, 1).

)_(_.Uo
o/ \n

~ N, 1).
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3)

For the alternative hypothesis H; : u > uy, we obtain:

Y
P(a-/\l/lr_(z) >Za) = a.

If we have:

the null hypothesis Hy : u = uy 1s rejected by the significance level a. Substi-

tuting X = 36, 02 = 22, n = 16 and 705 = 1.645, we obtain:

X—po 3635
o/vn  2/V16

The null hypothesis Hy : ¢ = 35 is rejected by the significance level a = 0.05.

=2 >z, = 1.645.

We compute the power of the test in the question (2). The power of the test is the
probability which rejects the null hypothesis under the alternative hypothesis.
That is, under the null hypothesis Hy : u = po, the region which rejects the null

hypothesis is: X > o + 2,07/ \/n, because

Y—,Uo
Ao

We compute the probability which rejects the null hypothesis under the alter-

N

native hypothesis H; : u = u;. That is, under the alternative hypothesis

H, : u =, the following probability is known as the power of the test:

P()_( > o + 2,07/ \/ﬁ)

Under the alternative hypothesis H; : u = u;, we have:
X- H
o/ \n

Therefore, we want to compute the following probability

~ N, 1).

)_(—,Ul Ho — th
P(O'/\/ﬁ > o/ v +za).
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Substituting o = 2, n = 16, yy = 35, uy = 36.5 and z, = 1.645, we obtain:

X-u  35-36.5 X
P(O_/\/E> G +1.645)—P(O_/ = > 1.355)
X
:1—P(0/\‘/‘£ > 1.355)

=1-0.0877 = 0.9123.

Note that zoosss = 1.35 and 793¢0 = 1.36.

X1, Xp, - -+, X,, are assumed to be mutually independent and be distributed as a

Poisson process, where the Poisson distribution is given by:

x,—A

A
PX=x)=f;)="——, x=0,1,2,---.

x!

Then, answer the following questions.

(1) Obtain the maximum likelihood estimator of A, which is denoted by A
(2) Prove that A is an unbiased estimator.
(3) Prove that A is an efficient estimator.

(4) Prove that A is an consistent estimator.
[Answer]

(1) We obtain the maximum likelihood estimator of A, denoted by A. The Poisson

distribution is:

e

PX=x)=f(x; 1) = , x=0,1,2,---.

x!

The likelihood function is:

n n /lx,-e—/l /12;}:1 x,-e—n/l
=] [fe=]]~—= .
i=1

n
i=1 X,‘! Hi:l Xl'!

The log-likelihood function is:
log I(2) = log(A) » x; = nd = log(| | x!).
i=1 i=1
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The derivative of the log-likelihood function with respect to A is:

dlogl(d) 1 - 3
o Saknn=o

Solving the above equation, the maximum likelihood estimator A is:

(2) We prove that A is an unbiased estimator of A.

E(Q):E(%ZX,»): %ZE(X,-): %Z‘ﬂ:ﬂ.

(3) We prove that A is an efficient estimator of A, where we show that the equality

holds in the Cramer-Rao inequality. First, we obtain V(1) as:

V(Q):V(%iXi): %EV(X,): %Zn;z: %

The Cramer-Rao lower bound is given by:

1 |
[(Mog f(X; /l)ﬂ - '(a(X log A — A - log X!))zl
o] | et -ASELA I
o PR
B | G
- r 21~ — )2
B ()_( _ 1) ] nE[(X — 1)?]
\2
22

TaVX) nd n

Therefore,
A 1
V(1) = .

E [(alog f(xwﬂ

o1
That is, V() is equal to the lower bound of the Cramer-Rao inequality. There-

fore, A is efficient.
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(4) We show that A is a consistent estimator of 1. Note as follows:
N A A
E(1) = 4, V() = —.
n
In Chebyshev’s inequality:

P(1-EQ)|>e) < VLf)
€

E() and V() are substituted. Then, we have:
n A
P1-2>€) <— — 0,
ne

which implies that 1 is consistent.

X1, X5, - -+, X, are mutually independently distributed as normal random vari-
ables. Note that the normal density is:

PO B
2o

Then, answer the following questions.

(1) Prove that the sample mean X = (1/n) >, X; is normally distributed with mean

u and variance 0% /n.

(2) Define: .
_X-n

o/\n

Show that Z is normally distributed with mean zero and variance one.

(3) Consider the sample unbiased variance:

T —
§2 = Z(X,- ~ X
i=1

n—1~4%
The distribution of (n — 1)S?/0” is known as a Chi-square distribution with n—1
degrees of freedom. Obtain mean and variance of S2. Note that a Chi-square

distribution with m degrees of freedom is:

1 m_y _x )
x27lem 2, if x > 0,

fo =4 22T
0, otherwise.
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(4) Prove that S? is an consistent estimator of 2.
[Answer]

(1) The distribution of the sample mean X = (1/n) >, X; is derived using the
moment-generating function. Note that for X ~ N(u, o) the moment-generating

function ¢(6) is:

00 00 1
$(0) = E@™) = f ¢ f(x) dx = f L
—o0 —o  V2ro?
© 1 — L ()
— f e 22 X—p)“+6x dx
- V2102

3 f | e—ﬁ<x2—2w+o'29)x+;12) dx
- V2mo?

0o 2
f 1 e—ﬁ(x—(,uﬂrze)) b 302D
—00 V2102

-~ 2
— ub+1026 f 1 —ﬁ(x—(yﬂr%)) dx = 0+ 1 292
e R e x exp(,u o )

In the integration above, N(u + 026, o) is utilized. Therefore, we have:

2
e_z(r2(x 1) dx

1 50
0:(0) = exp(,u@ + 50‘ 0 )
Now, consider the moment-generating function of X, denoted by ¢+(6):

572 1 yn “ [ g 0 L 9
8:(60) = E(e™) = B %) = E([ | %) = [ [ B = [ ] 6,5
i=1 i=1 i=1

n 2 2
= 1_[ eXP(ﬂg + %02(2)2) = exp(,ue + %a’z%) = exp(,u@ + %%02),

i=1

which is equivalent to the moment-generating function of the normal distribu-

tion with mean u and variance o /n.

(2) We derive the distribution of Z, which is shown as:

X-u
o/

From the question (1), the moment-generating function of X, denoted by ¢+(6),

1s:
6x 1o° 2
$2(6) = E(e™) = exp(u + 5—67).
2 n
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The moment-generating function of Z, denoted by ¢.(6):

$.(60) = (™) = E(exp(0-—L))

o/~\n
0 _
=eX ( - \/_) (exp( \/ZX))
= eXP(—HO_/'u\/ﬁ)fﬁ( 0\/—)

1 0 1
= eXP(_GO-/'u\/ﬁ> exp( O_/\/_ 2(2 (O_/ \/_) )— exp(iﬁz),

which is the moment-generating function of N(0, 1).

(3) First, as preliminaries, we derive mean and variance of the chi-square distribu-

tion with m degrees of freedom. The chi-square distribution with m degrees of

freedom is:

1 m_| _x
xX)=——x2 e 2, ifx>0.
J@® 221(3)
Therefore, the moment-generating function ¢,2(6) is:

1 .,
m X2
2T(%)

0 1 m 1
:f _ B-1,m50-20% g0
0 250(%)
© 1 y 7-1 _ly 1
_ ; d
fo 2’£r(§)(1—29) 1o
1oer 11,
= ’ 3lem 2 dx = (1-20)°%
(7=29) 1-29[0 2iT(Z) o dx=(1-267

In the fourth equality, use y = (1 — 26)x. The first and second derivatives of the

$,2(6) = B(e™) = f o
0

moment-generating function is:

B20) = m(1 =207, 0) = mOm +2)(1 - 20y
X X

Therefore, we obtain:

EQO = ¢ =m,  EX?) = ¢4(0) = m(m +2).
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Thus, for the chi-square distribution with m degrees of freedom, mean is given

by m and variance is:
V(X) = B(X?) - (E(X))* = m(m +2) — m?> = 2m.

Therefore, using (n — DS?/o? ~ )(z(n — 1), we have:

(n—1)S? (n—1)S?

E( )=n-1, V(T) =2(n-1),

o2
which implies

n-—1
o2

”;21 PV(S?) = 2(n - 1).

ESH=n-1, (

Finally, mean and variance of S? are:

2 4
ESY =02, V(S = Ll
n —

(4) We show that S? is a consistent estimator of o>. Chebyshev’s inequality is

utilized, which is:

V(S?)

e

P(S* - E(S?)| > e <
Substituting E(S?) and V(S?), we obtain:

20
PUS*-c?>e) < ——— 0.
(I Ul_e)_(n_1)€2—>

Therefore, S? is consistent.
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