

Homework (Due: June 12, 2012)

1 When $X \sim \chi^2(n)$, obtain $E(X)$ and $V(X)$.

Note that the $\chi^2(n)$ distribution is:

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} \exp(-\frac{x}{2}), \quad x > 0.$$

2 Suppose that $X \sim N(\mu, \sigma^2)$. Define $Y = e^X$. Then, obtain the distribution of Y , which is called the log-normal distribution. Moreover, what are $E(Y)$ and $V(Y)$?

3 Suppose that $X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$. Let X be independent of Y . Define $U = \frac{X/n}{Y/m}$. Then, prove that $U \sim F(n, m)$.

Note that the $F(m, n)$ distribution is:

$$f(x) = \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2}) \Gamma(\frac{n}{2})} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, \quad x > 0.$$

4 X_1, X_2, \dots, X_n are assumed to be mutually independently, identically and normally distributed with mean μ and variance σ^2 .

(1) Prove that $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$.

(2) Prove that $\sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$ is independent of $\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2$.

(3) What is the distribution of $\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2$?

(4) What is the distribution of $\sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$?