which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:
b=B+X"X")'X"u* =B+ X' Q' X)'XQu
The mean and variance of b are given by:
E(b) =B,
V(b) =*(X*'X*) " = 2(X'Q7 ' X)L
. Suppose that the regression model is given by:
y=XB+u, u ~ N, Q).
In this case, when we use OLS, what happens?
B=X'X)"'Xy=B+X'X)"'Xu
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V@B = (X' X)X’ QX (X' X)™!

Compare GLS and OLS.

(a) Expectation:
E)=B. and E®)=p
Thus, both B and b are unbiased estimator.

(b) Variance:

V(B = X' X) ' X QX(X'X)™!

V(b) = 2(X'Q7'X)!

Which is more efficient, OLS or GLS?.
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V@B - V) =X’ X)X QXX'X) ! - 22X Q' X)!
=((XX)'X - x Q') xat)e
(X)X - xo ') xal)
= 2AQA’
Note that A is k X n and Q is n X n.

Q) 1s the variance-covariance matrix of u, which is a positive definite ma-

trix.
Therefore, except for Q = I,, AQA’ is also a positive definite matrix.
(From ©Q = PP’ and AQA’ = AP(AP)’, we have xXAP(xAP)' = Zf;l zl.2 >0

for x # 0, where xis 1 X k, z = xAPis 1 X kand z = (21,22, *, Z%).)

This implies that V(3;) — V(b;) > 0 for the ith element of 3.
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Accordingly, b is more efficient than j3.

7. Ifu ~ N(0,0*Q), then b ~ N(B, r*2(X’Q ' X)™1).
Consider testing the hypothesis Hy : RB =r.
R: Gxk, rank(R)=G <k.
Rb ~ N(RB, 2R(X'Q'X)"'R").
Therefore, the following quadratic form is distributed as:

(Rb - rY (RX'Q'X)'R") " (Rb — 1)
2

~ x*(G)

(o

8. Because (y* — X*b)'(y* — X*b)/o? ~ x*(n — k), we obtain:

- XbyQ 'y — Xb
Q=X -XE) a0

g

131



9. Furthermore, from the fact that b is independent of y — Xb, the following F
distribution can be derived:

(Rb—rY(RX'Q'X) 'R (Rb - 1)/G
(v — XbYQ'(y — Xb)/(n — k)

~ F(G,n—k)
10. Let b be the unrestricted GLSE and b be the restricted GLSE.
Their residuals are given by e and i, respectively.
e=y—Xb, ii=y-Xb

Then, the F test statistic is written as follows:

@Q'u—-eQle)/G
eQle/(n—k)

~F(G,n—k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS = Stochastic linear restriction:

r=RB+v, E(v) =0 and V(v) = o*¥

y=XB+u, E(u) =0 and V(u) = o*I,
Using a matrix form,

C)=CelC) = ()=o) v ()=(5 )

For estimation, we do not need normality assumption.
Applying GLS, we obtain:

L, 0\ /xy)! I, 0\"'/y
g ) Gl ol W) ()
0 Y R 0 Y r

= (XX + R¥R) (X'y + R,

b=
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Mean and Variance of b: b is rewritten as follows:

-1

( I, 0\'/x\)" I, 0\"(y
i R P R S P )
0 v R 0 v r
( I, 0\"'/X\\ " [u
oo o) () ()
0 v R v
Therefore, the mean and variance are given by:

Eb) =8 = b is unbiased.

I, 0\'/X
V(b):a'z((X’ R’)( ) ( )J
0 ¥ R

= O'Z(X’X + R"P‘IR)_I

-1
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9 Maximum Likelihood Estimation (MLE, S755%)
— Review

1. The distribution function of {X;}?_, is f(x;0), where x = (x1, X2, - -, X,).

6 is a vector or matrix of unknown parameters, e.g., 0 = (u, ), where u = E(X;)

and £ = V(X).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(-) is defined as L(6; x) = f(x; ).

Note that f(x;0) = [], f(x;;6) when X;, X5, -+, X,, are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimate (MLE) of 6 is the 0 such that:

max L(0; x). = max log L(6; x).
6 0

Thus, MLE satisfies the following two conditions:

0log L(6; . .~
(a) % =0. = Solution of 8: 8 = 6(x)
0% log L(6; x) . . . .
(b) % is a negative definite matrix.
2. x = (xy1,x,--+,Xx,) are used as the observations (i.e., observed data).
X = (X1,X,,--+,X,) denote the random variables associated with the joint

distribution f(x;60) = [, f(xi; 0).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of 6 satisfies the following two conditions:

Olog L(0; X . ~
(a) % —0. = Solutionof §: 8 = B(X)
0*log L(6; X
(b) —Oﬁge 82’ ) is a negative definite matrix.

4. Fisher’s information matrix (7 1+ > ¥ —D1E#H1T5) or simply informa-
tion matrix, denoted by /(6), is given by:
0% log L(6; X)
10) = -E| —F—————
O =g )
where we have the following equality:

0% log L(6; X) _ (0log L(6; X) dlog L(0; X)\ ,,0log L(0; X)
—E( 9600’ )=E( 90 o6 )=V 90 )

Note that E(-) and V(-) are expected with respect to X.
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Proof of the above equality:

f L@;x)dx =1

Take a derivative with respect to 6.

f OL(0; x) dr=0

00

(We assume that (i) the domain of x does not depend on 6 and (ii) the derivative
0L(0; x)

06

exists.)

(*) Differentiation of Composite Functions (& EZ D %3) or Chain rule
(EEHB):
dlog L(0;x) _ dlog L(6;x)0L(O;x) 1  OL(6;x)
90 - 0L®:;x) 00  L#;x) 00

1.e.,
O0L(; x) _ dlog L(6; x)
/0 90

L(6; x)
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Rewriting the above equation, we obtain:

0L(6; x) f 0log L(6; x)
= —L . =
f 50 dx 50 (0; x)dx =0,

1.e.,

00

Again, differentiating the above with respect to 6, we obtain:

& logL(;x) dlog L(6; x) OL(6; x)
f 2000 L(6; x)dx + f 50 50 dx

#logL(O;x) dlog L(6; x) 0 log L(; x)
- f doap HO0dxE f 06 o0
0% log L(6; X) dlog L(6; X) dlog L(6; X)
=E E
(000 ) +E 2 o6

E(W) _0,

L(6; x)dx

)=0.

Therefore, we can derive the following equality:

B 0% log L(6; X) _E dlog L(6; X) dlog L(6; X) _v dlog L(6; X)
0006’ B 90 o0’ B 90 ’
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dlog L(0; X))
goem ) <.
00

. Cramer-Rao inequality (7 5 X—JL « 54 DFREFR) is given by:

where the second equality utilizes E (

V(s(X)) > (1(6),
where s(X) denotes an unbiased estimator of 6.

(1(0))7! is called Cramer-Rao Lower Bound (7 5 X—IJL + S A DTFIR).

Proof:

The expectation of s(X) is:

E(s(X)) = f s(x)L(0; x)dx.

Differentiating the above with respect to 6,

OE(s(X)) oLO;x) , dlog L(6;x)
T — fs(x)—ag dx = fs(x)—ae L(O, X)d.x
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- ov[s, Z2240:)

For simplicity, let s(X) and 6 be scalars.

Then,
IE(s(X)\ dlog L6; X)\\ dlog L(6; X)
( 50 ) = (COV (s(X), T)) =pV(s(X)V (T)
< V(X)) V (—a log aLe(e; X)) :

Olog L(6; X) .
—= 1 ‘e

where p denotes the correlation coefficient between s(X) and 50

Cov (s(X), dlog L(6; X))

00

p:

W\/ alogL(e X))

Note that |o| < 1.
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