
which is called GLS (Generalized Least Squares) estimator.

b is rewritten as follows:

b = β + (X⋆′X⋆)−1X⋆′u⋆ = β + (X′Ω−1X)−1X′Ω−1u

The mean and variance of b are given by:

E(b) = β,

V(b) = σ2(X⋆′X⋆)−1 = σ2(X′Ω−1X)−1.

6. Suppose that the regression model is given by:

y = Xβ + u, u ∼ N(0, σ2Ω).

In this case, when we use OLS, what happens?

β̂ = (X′X)−1X′y = β + (X′X)−1X′u
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V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

Compare GLS and OLS.

(a) Expectation:

E(β̂) = β, and E(b) = β

Thus, both β̂ and b are unbiased estimator.

(b) Variance:

V(β̂) = σ2(X′X)−1X′ΩX(X′X)−1

V(b) = σ2(X′Ω−1X)−1

Which is more efficient, OLS or GLS?.
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V(β̂) − V(b) = σ2(X′X)−1X′ΩX(X′X)−1 − σ2(X′Ω−1X)−1

= σ2
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)
Ω

×
(
(X′X)−1X′ − (X′Ω−1X)−1X′Ω−1

)′
= σ2AΩA′

Note that A is k × n and Ω is n × n.

Ω is the variance-covariance matrix of u, which is a positive definite ma-

trix.

Therefore, except for Ω = In, AΩA′ is also a positive definite matrix.

(From Ω = PP′ and AΩA′ = AP(AP)′, we have xAP(xAP)′ =
∑k

i=1 z2
i > 0

for x , 0, where x is 1 × k, z = xAP is 1 × k and z = (z1, z2, · · · , zk).)

This implies that V(β̂i) − V(bi) > 0 for the ith element of β.
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Accordingly, b is more efficient than β̂.

7. If u ∼ N(0, σ2Ω), then b ∼ N(β, σ2(X′Ω−1X)−1).

Consider testing the hypothesis H0 : Rβ = r.

R : G × k, rank(R) = G ≤ k.

Rb ∼ N(Rβ, σ2R(X′Ω−1X)−1R′).

Therefore, the following quadratic form is distributed as:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)
σ2 ∼ χ2(G)

8. Because (y⋆ − X⋆b)′(y⋆ − X⋆b)/σ2 ∼ χ2(n − k), we obtain:

(y − Xb)′Ω−1(y − Xb)
σ2 ∼ χ2(n − k)
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9. Furthermore, from the fact that b is independent of y − Xb, the following F

distribution can be derived:

(Rb − r)′(R(X′Ω−1X)−1R′)−1(Rb − r)/G
(y − Xb)′Ω−1(y − Xb)/(n − k)

∼ F(G, n − k)

10. Let b be the unrestricted GLSE and b̃ be the restricted GLSE.

Their residuals are given by e and ũ, respectively.

e = y − Xb, ũ = y − Xb̃

Then, the F test statistic is written as follows:

(ũ′Ω−1ũ − e′Ω−1e)/G
e′Ω−1e/(n − k)

∼ F(G, n − k)
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8.1 Example: Mixed Estimation (Theil and Goldberger Model)

A generalization of the restricted OLS =⇒ Stochastic linear restriction:

r = Rβ + v, E(v) = 0 and V(v) = σ2Ψ

y = Xβ + u, E(u) = 0 and V(u) = σ2In

Using a matrix form,( y

r

)
=

( X

R

)
β +

( u

v

)
, E

( u

v

)
=

( 0

0

)
and V

( u

v

)
= σ2

( In 0

0 Ψ

)
For estimation, we do not need normality assumption.

Applying GLS, we obtain:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
=

(
X′X + R′Ψ−1R

)−1(
X′y + R′Ψ−1r

)
.
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Mean and Variance of b: b is rewritten as follows:

b =

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( X′ R′ )
( In 0

0 Ψ

)−1 ( y

r

)
= β +

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1 ( u

v

)
Therefore, the mean and variance are given by:

E(b) = β =⇒ b is unbiased.

V(b) = σ2

( X′ R′ )
( In 0

0 Ψ

)−1 ( X

R

)−1

= σ2
(
X′X + R′Ψ−1R

)−1
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9 Maximum Likelihood Estimation (MLE,
さ い ゆ う最尤法)

−→ Review

1. The distribution function of {Xi}ni=1 is f (x; θ), where x = (x1, x2, · · · , xn).

θ is a vector or matrix of unknown parameters, e.g., θ = (µ,Σ), where µ = E(Xi)

and Σ = V(Xi).

Note that X is a vector of random variables and x is a vector of their realizations

(i.e., observed data).

Likelihood function L(·) is defined as L(θ; x) = f (x; θ).

Note that f (x; θ) =
∏n

i=1 f (xi; θ) when X1, X2, · · ·, Xn are mutually indepen-

dently and identically distributed.
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The maximum likelihood estimate (MLE) of θ is the θ such that:

max
θ

L(θ; x). ⇐⇒ max
θ

log L(θ; x).

Thus, MLE satisfies the following two conditions:

(a)
∂ log L(θ; x)
∂θ

= 0. =⇒ Solution of θ: θ̃ = θ̃(x)

(b)
∂2 log L(θ; x)
∂θ∂θ′

is a negative definite matrix.

2. x = (x1, x2, · · · , xn) are used as the observations (i.e., observed data).

X = (X1, X2, · · · , Xn) denote the random variables associated with the joint

distribution f (x; θ) =
∏n

i=1 f (xi; θ).
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3. Replacing x by X, we otain the maximum likelihood estimator (MLE, which

is the same word as the maximum likelihood estimate).

That is, MLE of θ satisfies the following two conditions:

(a)
∂ log L(θ; X)
∂θ

= 0. =⇒ Solution of θ: θ̃ = θ̃(X)

(b)
∂2 log L(θ; X)
∂θ∂θ′

is a negative definite matrix.

4. Fisher’s information matrix (フィッシャーの情報行列) or simply informa-

tion matrix, denoted by I(θ), is given by:

I(θ) = −E
(∂2 log L(θ; X)

∂θ∂θ′

)
,

where we have the following equality:

−E
(∂2 log L(θ; X)

∂θ∂θ′

)
= E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(∂ log L(θ; X)
∂θ

)
Note that E(·) and V(·) are expected with respect to X.
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Proof of the above equality: ∫
L(θ; x)dx = 1

Take a derivative with respect to θ.∫
∂L(θ; x)
∂θ

dx = 0

(We assume that (i) the domain of x does not depend on θ and (ii) the derivative
∂L(θ; x)
∂θ

exists.)

(*) Differentiation of Composite Functions (合成関数の微分) or Chain rule

(連鎖律):

∂ log L(θ; x)
∂θ

=
∂ log L(θ; x)
∂L(θ; x)

∂L(θ; x)
∂θ

=
1

L(θ; x)
∂L(θ; x)
∂θ

i.e.,
∂L(θ; x)
∂θ

=
∂ log L(θ; x)
∂θ

L(θ; x)
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Rewriting the above equation, we obtain:∫
∂L(θ; x)
∂θ

dx =
∫
∂ log L(θ; x)
∂θ

L(θ; x)dx = 0,

i.e.,

E
(
∂ log L(θ; X)
∂θ

)
= 0.

Again, differentiating the above with respect to θ, we obtain:∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂L(θ; x)
∂′θ

dx

=

∫
∂2 log L(θ; x)
∂θ∂θ′

L(θ; x)dx +
∫
∂ log L(θ; x)
∂θ

∂ log L(θ; x)
∂θ′

L(θ; x)dx

= E
(∂2 log L(θ; X)

∂θ∂θ′

)
+ E

(∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= 0.

Therefore, we can derive the following equality:

−E
(
∂2 log L(θ; X)
∂θ∂θ′

)
= E

(
∂ log L(θ; X)
∂θ

∂ log L(θ; X)
∂θ′

)
= V

(
∂ log L(θ; X)
∂θ

)
,
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where the second equality utilizes E
(
∂ log L(θ; X)
∂θ

)
= 0.

5. Cramer-Rao inequality (クラメール・ラオの不等式) is given by:

V(s(X)) ≥ (I(θ))−1,

where s(X) denotes an unbiased estimator of θ.

(I(θ))−1 is called Cramer-Rao Lower Bound (クラメール・ラオの下限).

Proof:

The expectation of s(X) is:

E(s(X)) =
∫

s(x)L(θ; x)dx.

Differentiating the above with respect to θ,

∂E(s(X))
∂θ

=

∫
s(x)
∂L(θ; x)
∂θ

dx =
∫

s(x)
∂ log L(θ; x)
∂θ

L(θ; x)dx
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= Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
For simplicity, let s(X) and θ be scalars.

Then,(
∂E(s(X))
∂θ

)2

=

(
Cov

(
s(X),

∂ log L(θ; X)
∂θ

))2

= ρ2V (s(X)) V
(
∂ log L(θ; X)
∂θ

)
≤ V (s(X)) V

(
∂ log L(θ; X)
∂θ

)
,

where ρ denotes the correlation coefficient between s(X) and
∂ log L(θ; X)
∂θ

, i.e.,

ρ =

Cov
(
s(X),

∂ log L(θ; X)
∂θ

)
√

V (s(X))

√
V

(
∂ log L(θ; X)
∂θ

) .
Note that |ρ| ≤ 1.
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