Therefore, we have the following inequality:

SE(s(X))\’ dlog L(6; X)
(T) < V(s(X)) V(T) ,
1.e.,
(6E<s<X>>)2
V(s(X)) >

00
Especially, when E(s(X)) = 6, i.e., when s(X) is an unbiased estimator of 6, the

- (810g Lo, X))

numerator of the right-hand side leads to one.

Therefore, we obtain:

1 P
V(s(X)) > NGTTIA O
002
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Even in the case where s(X) is a vector, the following inequality holds.

V(s(X)) = (1O) 7,

where 1(60) is defined as:
0% log L(6; X)
10)=-E| ————
© ( 0006’ )
0log L(6; X) 0log L(6; X) dlog L(8; X)
=E =V|————=|.
06 0o 00

The variance of any unbiased estimator of  is larger than or equal to (1(6))~'.

Thus, (1(6))~! results in the lower bound of the variance of any unbiased esti-

mator of 6.
. Asymptotic Normality of MLE:

Let 8 be MLE of 6.
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As n goes to infinity, we have the following result:

-1
Vn@é -6 — N[O, 1im(@) ]

n—oo n

n—o\ n

10
where it is assumed that lim (2) converges.

— The proof will be shown later.

That is, when 7 is large, 6 is approximately distributed as follows:

6~N (9, (1(9))—‘) .

Suppose that s(X) = 6.

When n is large, V(s(X)) is approximately equal to (/ (9))_1.
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7. Optimization (Fi#E1b):
MLE of 6 results in the following maximization problem:

max log L(6; x).
0

We often have the case where the solution of 6 is not derived in closed form.

= Optimization procedure
0= dlog L(0;x) _ dlog L(6"; x) . 8% log L(6"; x)
I 06 0606

@—6).

Solving the above equation with respect to 6, we approximately obtain the

following:

0o & log L(9"; x)\ ' dlog L(6"; x)
- 0606’ 00

Replace the variables as follows:
6 — gD g — ¥
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Then, we have:

. )\ 7! 0.
2D _ g _ (62 log L(9<>,x)) 9log L(H”: x)

06000’ a0

— Newton-Raphson method (Za2— k> « STV Vi)

0% log L(6Y; x) 0% log L(6Y; x)
Replacing ——— by E| ———
eplacing 0000’ 0000’
timization algorithm:

), we obtain the following op-

gi+h — g (E (62 log L(6D; x) ))—1 dlog L(OD; x)

06000’ 00
-1 dlog L(67; x)

= 0 + (1(6")) =

= Method of Scoring (X J77%)

Convergence speed might be improved, compared with Newton-Raphson method.
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9.1 MLE: The Case of Single Regression Model

The regression model:

yi =1+ Baxi + u;,
1. u; ~ N(0,0?) is assumed.

2. The density function of u; is:

fu(ui) = # eXp (_Luz) .

o2 202
Because uy, u, - - -, u, are mutually independently distributed, the joint density
function of u;, u,, - - -, u,, s written as:

fu(ula Uy, un) = fu(ul)fu(MZ) e ﬁl(ul’l)

I S,
" @agryr P [_272 20
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3. Using the transformation of variable (v; = y; — 81 — B2x;), the joint density

function of y;, y,- -+, y, 1s given by:

du
Gy -,yn>—]—[fu(yl B o 3

1 2
= Qro2yn XP (—@ ;(Yi — B — Ba2xi) ]
= L(ﬂlaﬁZa 0'2|)71aYZ, e ’yn)

L(B1, B2, T2|y1, V2, - - -, yp) is called the likelihood function.

log L(B1, B2, 0'2|y1 , Y2, -, yu) 1s called the log-likelihood function.

log L(B1, B2, Y1, Y2, -+ » V)

= —g log(2n) — glog(O'z) - Z()’z Bi — Brx)’
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4. Transformation of Variable (Z#{Z#:) — Review:

Suppose that the density function of a random variable X is f,(x).

Defining X = g(Y), the density function of Y, f,(y), is given by:

dg(y)
500 = fitgon £
y
dg(y)
In the case where X and g(Y) are n X 1 vectors, q should be replaced by
y
0 0
% , which is an absolute value of a determinant of the matrix gq .
y Y
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Example: When X ~ U(0, 1), derive the density function of ¥ = —log(X).

(o) =1

X = exp(-Y) is obtained.

Therefore, the density function of Y, f,(y), is given by:

f:(g(y) = | — exp(=y)| = exp(-y)

) = ‘j—;‘
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5. [Going back to 3]: Given the observed data yy, y,, - - -, y,, the likelihood func-
tion L(B;, Bs, 0'2|y1, Y2, =+, yn), or the log-likelihood function log L(B;, [,

a2|y1, Y2, - - -, yn) is maximized with respect to (81, B2, 0°2).

Solve the following three simultaneous equations:

A10g L(B1, B2, T2|y1, Y2, * > Yu) 1 <
= - E i - i) =0,
aﬂl 0_2 L (y ﬁl ﬁZx)

alOgL(ﬁl’ﬁZao-zb)layZ""9yn) 1 .
== i~ - )x; = 0,
95, = ;:1 i = B1 = Baxi)x

alogL(lBI?ﬁZao-zlylayZ""’yn) _ n 1 1 & 2
502 ——50724‘27_4;@1’—,31 = Baxi)” = 0.

The solutions of (B, B,, o) are called the maximum likelihood estimates,

denoted by (31, B>, 57).
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The maximum likelihood estimates are:

B _ Z?:l(xi - 0)Qi—Y)
A

~ . 5 1 < o -

B =y —pax, = - Z(Yi — B = Boxi)*.
ni

The MLE of ¢ is divided by n, not n — 2.

9.2 MLE: The Case of Multiple Regression Model I

1. Multivariate Normal Distribution: X:nxland X ~ N, X)

The density function of X is:
_ 1 e
F@) = QoI exp(—2 (- /£ (- ).

2. Regressionmodel: y=XB+u, u~ N(,0c?l,)
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Transformation of Variables from u to y:

-n 1 ’
fu(u) = Qro?)™"? exp(—ﬁu u)
0
K0 = 1y = XB) |55
-n 1 ’
= (210?) " exp(~5— (v = XB)' (v - XB))

= L(6;y, X),

0
where 0 = (8, 0?), because of a_u/ =1,
y

Therefore, the log-likelihood function is:
. _ n 2 1 ’
log L(8;y, X) = =5 log(2no) = 7— (v = XB) (v = XB),

Note that [E]71/? = |02 L,|71/? = /2.
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