
3. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)
∂θ∂θ′

is a negative definite matrix.

We obtain MLE of β and σ2:

β̃ = (X′X)−1X′y, σ̃2 =
(y − Xβ̃)′(y − Xβ̃)

n
,

where σ̃2 is divided by n, not n − k.

4. Fisher’s information matrix is:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)
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The inverse of the information matrix, I(θ)−1, provides a lower bound of the

variance - covariance matrix for unbiased estimators of θ .

I(θ)−1 =

(
σ2(X′X)−1 0

0
2σ4

n

)

For large n, we approximately obtain:
(
β̃

σ̃2

)
∼ N

((
β

σ2

)
,

(
σ2(X′X)−1 0

0
2σ4

n

))
.

9.3 MLE: The Case of Multiple Regression Model II

1. Regression model: y = Xβ + u, u ∼ N(0, σ2Ω)

Transformation of Variables from u to y:

fu(u) = (2πσ2)−n/2|Ω|−1/2 exp
(
− 1

2σ2 u′Ω−1u
)

fy(y) = fu(y − Xβ)
∣∣∣∣∣ ∂u∂y′

∣∣∣∣∣
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= (2πσ2)−n/2|Ω|−1/2 exp
(
− 1

2σ2 (y − Xβ)′Ω−1(y − Xβ)
)

= L(θ; y, X),

where θ = (β, σ2), because of
∂u
∂y′
= In.

The log-likelihood function is:

log L(θ; y, X) = −n
2

log(2πσ2) − 1
2

log |Ω| − 1
2σ2 (y − Xβ)′Ω−1(y − Xβ),

where θ = (β, σ2).

2. max
θ

log L(θ; y, X)

(FOC)
∂ log L(θ; y, X)

∂θ
= 0

(SOC)
∂2 log L(θ; y, X)
∂θ∂θ′

is a negative definite matrix.
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Then, we obtain MLE of β and σ2:

β̃ = (X′Ω−1X)−1X′Ω−1y, σ̃2 =
(y − Xβ̃)′Ω−1(y − Xβ̃)

n

3. Fisher’s information matrix is defined as:

I(θ) = −E
(∂2 log L(θ; y, X)

∂θ∂θ′

)
The inverse of the information matrix, I(θ)−1, provides a lower bound of the

variance - covariance matrix for unbiased estimators of θ, which is given by:

I(θ)−1 =

(
σ2(X′Ω−1X)−1 0

0
2σ4

n

)
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9.4 MLE: AR(1) Model

The pth-order Autoregressive Model, i.e., AR(p) Model (p次の自己回帰モデル):

yt = ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + ut

AR(1) Model: t = 2, 3, · · · , n,

yt = ϕ1yt−1 + ut, ut ∼ N(0, σ2)

where |ϕ1| < 1 is assumed for now.

To obtain the joint density function of y1, y2, · · · , yn, f (yn, yn−1, · · · , y1) is decomposed

as follows:
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f (yn, yn−1, · · · , y1)

= f (yn|yn−1, · · · , y1) f (yn−1, yn−2, · · · , y1)

= f (yn|yn−1, · · · , y1) f (yn−1|yn−2, · · · , y1) f (yn−2, yn−3, · · · , y1)

· · ·

= f (yn|yn−1, · · · , y1) f (yn−1|yn−2, · · · , y1) f (yn−2, yn−3, · · · , y1) · · · f (y2|y1) f (y1)

= f (y1)
n∏

t=2

f (yt|yt−1, · · · , y1).

Note that Bayes theorem is applied and repeated.

That is, P(A ∩ B) = P(A|B)P(B) for two events A and B.

We say that the joint distribution (or the likelihood function) is represented in the

innovation form.
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From yt = ϕ1yt−1 + ut, we can obtain:

E(yt|yt−1, · · · , y1) = ϕ1yt−1, and V(yt|yt−1, · · · , y1) = σ2.

Therefore, the conditional distribution f (yt|yt−1, · · · , y1) is:

f (yt|yt−1, · · · , y1) =
1

√
2πσ2

exp
(
− 1

2σ2 (yt − ϕ1yt−1)2
)
.
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To obtain the unconditional distribution f (yt), yt is rewritten as follows:

yt = ϕ1yt−1 + ut

= ϕ2
1yt−2 + ut + ϕ1ut−1

...

= ϕτ1yt−τ + ut + ϕ1ut−1 + · · · + ϕτ−1
1 ut−τ+1

...

= ut + ϕ1ut−1 + ϕ
2
1ut−2 + · · · , when τ goes to infinity under the condition |ϕ1| < 1.
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The unconditional expectation and variance of yt is:

E(yt) = 0, and V(yt) = σ2(1 + ϕ2
1 + ϕ

4
1 + · · ·) =

σ2

1 − ϕ2
1

.

Therefore, the unconditional distribution of yt is given by:

f (yt) =
1√

2πσ2/(1 − ϕ2
1)

exp
(
− 1

2σ2/(1 − ϕ2
1)

y2
t

)
.
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Finally, the joint distribution of y1, y2, · · · , yn is given by:

f (yn, yn−1, · · · , y1) = f (y1)
n∏

t=2

f (yt|yt−1, · · · , y1)

=
1√

2πσ2/(1 − ϕ2
1)

exp
(
− 1

2σ2/(1 − ϕ2
1)

y2
1

)

×
n∏

t=2

1
√

2πσ2
exp

(
− 1

2σ2 (yt − ϕ1yt−1)2
)

163



The log-likelihood function is:

log L(ϕ1, σ
2; yn, yn−1, · · · , y1) = −1

2
log 2πσ2/(1 − ϕ2

1) − 1
2σ2/(1 − ϕ2

1)
y2

1

−n − 1
2

log 2πσ2 − 1
2σ2

n∑
t=2

(yt − ϕ1yt−1)2

= −n
2

log 2π − n
2

logσ2 +
1
2

log(1 − ϕ2
1)

− 1
2σ2

(
(
√

1 − ϕ2
1y1)2 +

n∑
t=2

(yt − ϕ1yt−1)2
)

Maximize log L with respect to ϕ1 and σ2.

Maximization Procedure:

• Newton-Raphson Method, or Method of Scoring

• Simple Grid Search (search maximization within the range −1 < ϕ1 < 1, chang-

ing the value of ϕ1 by 0.01)
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Simple Grid Search: From
∂L(ϕ1, σ

2; yn, yn−1, · · · , y1)
∂σ2 = 0, we obtain:

σ2 =
1
n

(
(
√

1 − ϕ2
1y1)2 +

n∑
t=2

(yt − ϕ1yt−1)2
)

= σ2(ϕ1)

Substituting σ2(ϕ1) into σ2, log L(ϕ1, σ
2; yn, yn−1, · · · , y1) is given by:

log L(ϕ1, σ
2(ϕ1); yn, yn−1, · · · , y1) = −n

2
log 2π − n

2
logσ2(ϕ1) +

1
2

log(1 − ϕ2
1) − n

2

which is a function of ϕ1.

This likelihood function is called the concentrated log-likelihood function (集約対
数尤度関数)

Find a maximum value of log L(ϕ1, σ
2(ϕ1); yn, yn−1, · · · , y1) for ϕ1 = −0.99, −0.98, · · · , 0.99.
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Another representation of the joint distribution: Mean and variance of y = (y1, y2, · · · , yn)′:

Remember that for |τ| < 1 we have the following:

yt = ϕ
τ
1yt−τ + ut + ϕ1ut−1 + ϕ

2
1ut−2 + · · · ϕτ−1

1 ut−τ+1

= ut + ϕ1ut−1 + ϕ
2
1ut−2 + · · ·

Mean:

E(yt) = E(ut + ϕ1ut−1 + ϕ
2
1ut−2 + · · ·)

= E(ut) + ϕ1E(ut−1) + ϕ2
1E(ut−2) + · · ·

= 0

Variance:

V(yt) = V(ut + ϕ1ut−1 + ϕ
2
1ut−2 + · · ·)

= V(ut) + ϕ2
1V(ut−1) + ϕ4

1V(ut−2) + · · ·
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= σ2(1 + ϕ2
1 + ϕ

4
1 + · · ·)

=
σ2

1 − ϕ2
1

.

Covariance:

γ(τ) = Cov(yt, yt−τ)

= E(ytyt−τ) = E
(
(ϕτ1yt−τ + ut + ϕ1ut−1 + ϕ

2
1ut−2 + · · · ϕτ−1

1 ut−τ+1)yt−τ
)

= ϕτ1E(y2
t−τ) + E(utyt−τ) + ϕ1E(ut−1yt−τ) + ϕ2

1E(ut−2yt−τ) + · · · ϕτ−1
1 E(ut−τ+1yt−τ)

= ϕτ1E(y2
t−τ)

= ϕτ1γ(0)

Note that E(utys) = 0 for t > s, because ys is a linear function of us, us−1, · · · and

E(utus) = 0 for t > s.

Moreover, note that V(yt) = γ(0).
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Thus,

E(y) = E


y1

y2
...

yn


=


0

0
...

0



V(y) = E(yy′) = E




y1

y2
...

yn


(y1, y2, · · · , yn)



=



γ(0) γ(1) · · · γ(n − 1)

γ(1) γ(0) γ(1) · · · γ(n − 2)

γ(1) γ(0) . . .
...

...
...

. . .
. . . γ(1)

γ(n − 1) γ(n − 2) · · · γ(1) γ(0)


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=



γ(0) ϕ1γ(0) · · · ϕn−1
1 γ(0)

ϕ1γ(0) γ(0) ϕ1γ(0) · · · ϕn−2
1 γ(0)

ϕ1γ(0) γ(0) . . .
...

...
...

. . .
. . . ϕ1γ(0)

ϕn−1
1 γ(0) ϕn−2

1 γ(0) · · · ϕ1γ(0) γ(0)



= γ(0)



1 ϕ1 · · · ϕn−1
1

ϕ1 1 ϕ1 · · · ϕn−2
1

ϕ1 1 . . .
...

...
...

. . .
. . . ϕ1

ϕn−1
1 ϕn−2

1 · · · ϕ1 1


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=
σ2

1 − ϕ2
1



1 ϕ1 · · · ϕn−1
1

ϕ1 1 ϕ1 · · · ϕn−2
1

ϕ1 1 . . .
...

...
...

. . .
. . . ϕ1

ϕn−1
1 ϕn−2

1 · · · ϕ1 1


= Ω

Thus, the joint distribution of y = (y1, y2, · · · , yn) is:

f (y) = (2π)−n/2|Ω|−1/2 exp(−1
2

y′Ω−1y),

which is the same as the innovation form.
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