Consider the relationship between the likelihood function above and the innovation form.

Remember the innovation form:

$$\log L(\phi_1, \sigma^2; y_n, y_{n-1}, \dots, y_1) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 + \frac{1}{2} \log(1 - \phi_1^2)$$
$$-\frac{1}{2\sigma^2} \Big((\sqrt{1 - \phi_1^2} y_1)^2 + \sum_{t=0}^{n} (y_t - \phi_1 y_{t-1})^2 \Big)$$

Focus on the last term:

$$(\sqrt{1-\phi_1^2}y_1)^2 + \sum_{t=2}^n (y_t - \phi_1 y_{t-1})^2$$

$$= (\sqrt{1-\phi_1^2}y_1, y_2 - \phi_1 y_1, y_3 - \phi_1 y_2, \dots, y_n - \phi_1 y_{n-1}) \begin{pmatrix} \sqrt{1-\phi_1^2}y_1 \\ y_2 - \phi_1 y_1 \\ y_3 - \phi_1 y_2 \\ \vdots \\ y_n - \phi_1 y_{n-1} \end{pmatrix}$$

$$\begin{pmatrix} \sqrt{1 - \phi_1^2} y_1 \\ y_2 - \phi_1 y_1 \\ y_3 - \phi_1 y_2 \\ \vdots \\ y_n - \phi_1 y_{n-1} \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \phi_1^2} & 0 & \cdots & \cdots & 0 \\ -\phi_1 & 1 & \ddots & \vdots \\ 0 & -\phi_1 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -\phi_1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = Ay$$

Therefore,

$$(\sqrt{1-\phi_1^2}y_1)^2 + \sum_{t=0}^{n} (y_t - \phi_1 y_{t-1})^2 = (Ay)'Ay = y'A'Ay$$

Comaring the exponential parts, the following equality holds.

$$-\frac{1}{2}y'\Omega^{-1}y = -\frac{1}{2\sigma^2}y'A'Ay$$
 i.e., $\Omega^{-1} = \frac{1}{\sigma^2}A'A$

Remember that there exists P such that $\Omega = PP'$ when Ω is a symmetric and positive definite matrix.

In the AR(1) case, $P = \sigma A^{-1}$.

9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

$$y_t = x_t \beta + u_t, \qquad u_t = \rho u_{t-1} + \epsilon_t, \qquad \epsilon_t \sim \text{ iid } N(0, \sigma_{\epsilon}^2).$$

The joint distribution of u_n, u_{n-1}, \dots, u_1 is:

$$f_{u}(u_{n}, u_{n-1}, \dots, u_{1}; \rho, \sigma_{\epsilon}^{2}) = f_{u}(u_{1}; \rho, \sigma_{\epsilon}^{2}) \prod_{t=2}^{n} f_{u}(u_{t}|u_{t-1}, \dots, u_{1}; \rho, \sigma_{\epsilon}^{2})$$

$$= (2\pi\sigma_{\epsilon}^{2}/(1-\rho^{2}))^{-1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}/(1-\rho^{2})}u_{1}^{2}\right)$$

$$\times (2\pi\sigma_{\epsilon}^{2})^{-(n-1)/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}\sum_{t=2}^{n} (u_{t} - \rho u_{t-1})^{2}\right).$$

By transformation of variables from u_n, u_{n-1}, \dots, u_1 to y_n, y_{n-1}, \dots, y_1 , the joint distribution of y_n, y_{n-1}, \dots, y_1 is:

$$f_{y}(y_{n}, y_{n-1}, \dots, y_{1}; \rho, \sigma_{\epsilon}^{2}, \beta)$$

$$= f_{u}(y_{n} - x_{n}\beta, y_{n-1} - x_{n-1}\beta, \dots, y_{1} - x_{1}\beta; \rho, \sigma_{\epsilon}^{2}) \left| \frac{\partial u}{\partial y'} \right|$$

$$= (2\pi\sigma_{\epsilon}^{2}/(1-\rho^{2}))^{-1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}/(1-\rho^{2})}(y_{1} - x_{1}\beta)^{2}\right)$$

$$\times (2\pi\sigma_{\epsilon}^{2})^{-(n-1)/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}\sum_{t=2}^{n}\left((y_{t} - \rho y_{t-1}) - (x_{t} - \rho x_{t-1})\beta\right)^{2}\right)$$

$$= (2\pi\sigma_{\epsilon}^{2})^{-1/2}(1-\rho^{2})^{1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}\sum_{t=2}^{n}\left((y_{t} - \rho y_{t-1}) - (x_{t} - \rho x_{t-1})\beta\right)^{2}\right)$$

$$\times (2\pi\sigma_{\epsilon}^{2})^{-(n-1)/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}\sum_{t=2}^{n}\left((y_{t} - \rho y_{t-1}) - (x_{t} - \rho x_{t-1})\beta\right)^{2}\right)$$

$$= (2\pi\sigma_{\epsilon}^{2})^{-n/2}(1-\rho^{2})^{1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}(y_{1}^{*} - x_{1}^{*}\beta)^{2}\right) \times \exp\left(-\frac{1}{2\sigma_{\epsilon}^{2}}\sum_{t=2}^{n}(y_{t}^{*} - x_{t}^{*}\beta)^{2}\right)$$

$$= (2\pi)^{-n/2} (\sigma_{\epsilon}^2)^{-n/2} (1 - \rho^2)^{1/2} \exp\left(-\frac{1}{2\sigma_{\epsilon}^2} \sum_{t=1}^n (y_t^* - x_t^* \beta)^2\right)$$

= $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1),$

where y_t^* and x_t^* are given by:

$$y_{t}^{*} = \begin{cases} \sqrt{1 - \rho^{2}} y_{t}, & \text{for } t = 1, \\ y_{t} - \rho y_{t-1}, & \text{for } t = 2, 3, \dots, n, \end{cases}$$
$$x_{t}^{*} = \begin{cases} \sqrt{1 - \rho^{2}} x_{t}, & \text{for } t = 1, \\ x_{t} - \rho x_{t-1}, & \text{for } t = 2, 3, \dots, n, \end{cases}$$

 \bigcirc For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1)$ with respect to β should be zero.

$$\tilde{\beta} = \left(\sum_{t=1}^{T} x_t^{*'} x_t^*\right)^{-1} \left(\sum_{t=1}^{T} x_t^{*'} y_t^*\right)$$
$$= \left(X^{*'} X^*\right)^{-1} X^{*'} y^*$$

 \implies This is equivalent to OLS from the regression model: $y^* = X^*\beta + \epsilon$ and $\epsilon \sim N(0, \sigma^2 I_n)$, where $\sigma^2 = \sigma_{\epsilon}^2/(1 - \rho^2)$.

© For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1)$ with respect to σ_{ϵ}^2 should be zero.

$$\tilde{\sigma}_{\epsilon}^{2} = \frac{1}{n} \sum_{t=1}^{n} (y_{t}^{*} - x_{t}^{*}\beta)^{2} = \frac{1}{n} (y^{*} - X^{*}\beta)'(y^{*} - X^{*}\beta),$$

where

$$y^* = \begin{pmatrix} y_1^* \\ y_2^* \\ \vdots \\ y^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} y_1 \\ y_2 - \rho y_1 \\ \vdots \\ y_n - \rho y_{n-1} \end{pmatrix}, \qquad X^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} x_1 \\ x_2 - \rho x_1 \\ \vdots \\ x_n - \rho x_{n-1} \end{pmatrix}.$$

© For maximization, the first derivative of $L(\rho, \sigma_{\epsilon}^2, \beta; y_n, y_{n-1}, \dots, y_1)$ with respect to ρ should be zero.

$$\max_{\beta,\sigma_{\epsilon}^2,\rho} L(\rho,\sigma_{\epsilon}^2,\beta;y) \quad \text{is equivalent to} \quad \max_{\rho} L(\rho,\tilde{\sigma}_{\epsilon}^2,\tilde{\beta};y).$$

Note that both $\tilde{\sigma}_{\epsilon}^2$ and $\tilde{\beta}$ depend only on ρ .

 $L(\rho, \tilde{\sigma}_{\epsilon}^2, \tilde{\beta}; y)$ is called the **concentrated log-likelihood function** (集約対数尤度関数), which is a function of ρ .

The log-likelihood function is written as:

$$\begin{split} \log L(\rho, \tilde{\sigma}_{\epsilon}^2, \tilde{\beta}; y) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\tilde{\sigma}_{\epsilon}^2) + \frac{1}{2} \log(1 - \rho^2) - \frac{n}{2} \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} - \frac{n}{2} \log(\tilde{\sigma}_{\epsilon}^2(\rho)) + \frac{1}{2} \log(1 - \rho^2) \end{split}$$

For maximization of $\log L$, use Newton-Raphson method, method of scoring or simple grid search

Note that
$$\tilde{\sigma}_{\epsilon}^2 = \tilde{\sigma}_{\epsilon}^2(\rho) = \frac{1}{n}(y^* - X^*\tilde{\beta})'(y^* - X^*\tilde{\beta})$$
 for $\tilde{\beta} = (X^{*'}X^*)^{-1}X^{*'}y^*$.

Remark: The regression model with AR(1) error is:

$$y_{t} = x_{t}\beta + u_{t}, \qquad u_{t} = \rho u_{t-1} + \epsilon_{t}, \qquad \epsilon_{t} \sim \operatorname{iid} N(0, \sigma_{\epsilon}^{2}).$$

$$V(u) = \sigma^{2} \begin{pmatrix} 1 & \rho & \rho^{2} & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \rho^{2} & \cdots & \rho^{n-2} \\ \rho^{2} & \rho & 1 & \rho & \cdots & \rho^{n-3} \\ \rho^{3} & \rho^{2} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \rho \\ \rho^{n-1} & \rho^{n-2} & \cdots & \rho^{2} & \rho & 1 \end{pmatrix} = \sigma^{2}\Omega, \qquad \text{where } \sigma^{2} = \frac{\sigma_{\epsilon}^{2}}{1 - \rho^{2}}.$$

where $Cov(u_i, u_j) = E(u_i u_j) = \sigma^2 \rho^{|i-j|}$, i.e., the *i*th row and *j*th column of Ω is $\rho^{|i-j|}$.

The regression model with AR(1) error is: $y = X\beta + u$, $u \sim N(0, \sigma^2\Omega)$.

There exists P which satisfies that $\Omega = PP'$, because Ω is a positive definite matrix.

Multiply P^{-1} on both sides from the left.

$$P^{-1}y = P^{-1}X\beta + P^{-1}u$$
 \Longrightarrow $y^* = X^*\beta + u^* \text{ and } u^* \sim N(0, \sigma^2 I_n)$
 \Longrightarrow Apply OLS.

$$y^* = \begin{pmatrix} y_1^* \\ y_2^* \\ \vdots \\ y_n^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} y_1 \\ y_2 - \rho y_1 \\ \vdots \\ y_n - \rho y_{n-1} \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} & 0 & \cdots & 0 \\ -\rho & 1 & 0 & \cdots & 0 \\ 0 & -\rho & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -\rho & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = P^{-1}y$$

$$X^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x^* \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \rho^2} x_1 \\ x_2 - \rho x_1 \\ \vdots \\ x_n - \rho x_{n-1} \end{pmatrix} = P^{-1}X \qquad \Longrightarrow \qquad \text{Check } P^{-1}\Omega P^{-1} = aI_n, \text{ where } a \text{ is constant.}$$

9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the regression model is written as follows:

$$y_i = x_i \beta + u_i,$$
 $u_i \sim \text{id } N(0, \sigma_i^2),$ $\sigma_i^2 = (z_i \alpha)^2.$

The joint distribution of u_n, u_{n-1}, \dots, u_1 , denoted by $f_u(\cdot; \cdot)$, is given by:

$$\log f_u(u_n, u_{n-1}, \dots, u_1; \sigma_1^2, \dots, \sigma_n^2) = \sum_{i=1}^n \log f_u(u_i; \sigma_i^2)$$

$$= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^n \log(\sigma_i^2) - \frac{1}{2} \sum_{i=1}^n \left(\frac{u_i}{\sigma_i}\right)^2$$

$$= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^n \log(z_i \alpha)^2 - \frac{1}{2} \sum_{i=1}^n \left(\frac{u_i}{z_i \alpha}\right)^2$$

By the transformation of variables from u_n, u_{n-1}, \dots, u_1 to y_n, y_{n-1}, \dots, y_1 , the log-

likelihood function is:

$$L(\alpha, \beta; y_n, y_{n-1}, \dots, y_1) = \log f_y(y_n, y_{n-1}, \dots, y_1; \alpha, \beta)$$

$$= \log f_u(y_n - x_n \beta, y_{n-1} - x_{n-1} \beta, \dots, y_1 - x_1 \beta; \sigma_i^2) \left| \frac{\partial u}{\partial y'} \right|$$

$$= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{n} \log(z_i \alpha)^2 - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - x_i \beta}{z_i \alpha} \right)^2$$

 \implies Maximize the above log-likelihood function with respect to β and α .

10 Asymptotic Theory

1. Definition: Convergence in Distribution (分布収束)

A series of random variables $X_1, X_2, \dots, X_n, \dots$ have distribution functions F_1, F_2, \dots , respectively.

If

$$\lim_{n\to\infty}F_n=F,$$

then we say that a series of random variables X_1, X_2, \cdots converges to F in distribution.

2. Consistency (一致性):

(a) Definition: Convergence in Probability (確率収束)

Let $\{Z_n : n = 1, 2, \dots\}$ be a series of random variables.

If the following holds,

$$\lim_{n\to\infty} P(|Z_n-\theta|<\epsilon)=1,$$

for any positive ϵ , then we say that Z_n converges to θ in probability.

 θ is called a **probability limit** (確率極限) of Z_n .

$$p\lim Z_n = \theta.$$

(b) Let $\hat{\theta}_n$ be an estimator of parameter θ .

If $\hat{\theta}_n$ converges to θ in probability, we say that $\hat{\theta}_n$ is a consistent estimator of θ .

3. Markov's Inequality: A General Case of Chebyshev's Inequality:

For $g(X) \ge 0$,

$$P(g(X) \ge k) \le \frac{\mathrm{E}(g(X))}{k},$$

where k is a positive constant. See *Introduction Mathematical Statistics* (8th ed.), p.79 for the proof.

4. **Example:** For a random variable X, set $g(X) = (X - \mu)'(X - \mu)$, $E(X) = \mu$ and $V(X) = \Sigma$.

Then, we have the following inequality:

$$P((X - \mu)'(X - \mu) \ge k) \le \frac{\operatorname{tr}(\Sigma)}{k}.$$

Note as follows:

$$E((X - \mu)'(X - \mu)) = E\Big(\operatorname{tr}((X - \mu)'(X - \mu))\Big) = E\Big(\operatorname{tr}((X - \mu)(X - \mu)')\Big)$$
$$= \operatorname{tr}\Big(E((X - \mu)(X - \mu)')\Big) = \operatorname{tr}(\Sigma).$$

5. Example 1 (Univariate Case):

Suppose that $X_i \sim (\mu, \sigma^2)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)^2$$
, $\epsilon^2 = k$, $E(g(\overline{X})) = V(\overline{X}) = \frac{\sigma^2}{n}$.

Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$$
, for any ϵ .

That is, for any ϵ ,

$$\lim_{n\to\infty} P(|\overline{X} - \mu| < \epsilon) = 1.$$

⇒ Chebyshev's inequality

6. Example 2 (Multivariate Case):

Suppose that $X_i \sim (\mu, \Sigma)$, $i = 1, 2, \dots, n$.

Then, the sample average \overline{X} is a consistent estimator of μ .

Proof:

Note that
$$g(\overline{X}) = (\overline{X} - \mu)'(\overline{X} - \mu), \ \epsilon^2 = k, \ \mathrm{E}(g(\overline{X})) = \mathrm{tr}(V(\overline{X})) = \mathrm{tr}(\frac{1}{n}\Sigma).$$

Use Chebyshev's inequality.

If $n \longrightarrow \infty$,

$$P((\overline{X} - \mu)'(\overline{X} - \mu) \ge k) = P(|\overline{X} - \mu| \ge \epsilon) \le \frac{\operatorname{tr}(\Sigma)}{n\epsilon^2} \longrightarrow 0$$
, for any positive ϵ .

That is, for any positive ϵ , $\lim_{n\to\infty} P((\overline{X} - \mu)'(\overline{X} - \mu) < k) = 1$.

Note that $|\overline{X} - \mu| = \sqrt{(\overline{X} - \mu)'(\overline{X} - \mu)}$, which is the distance between X and μ .

⇒ Chebyshev's inequality

7. Some Formulas:

Let X_n and Y_n be the random variables which satisfy plim $X_n = c$ and plim $Y_n = d$. Then,

- (a) $plim (X_n + Y_n) = c + d$
- (b) $plim X_n Y_n = cd$
- (c) plim $X_n/Y_n = c/d$ for $d \neq 0$
- (d) plim $g(X_n) = g(c)$ for a function $g(\cdot)$

8. Some Formulas II:

Let X_n and Y_n be the random variables which satisfy $X_n \longrightarrow c$ (convergence in probability) and $Y_n \longrightarrow Y$ (convergence in distribution). Then,

$$X_n Y_n \longrightarrow cY$$

- (a) cY is distributed with mean cE(Y) and variance $c^2V(Y)$.
- (b) In the multivariate case, cY is distributed with mean cE(Y) and variance cV(Y)c', where c, Y, E(Y) and V(Y) are $m \times k$, $k \times 1$, $k \times 1$ and $k \times k$ vectors or matrices.

9. Central Limit Theorem (中心極限定理)

Univariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as mean μ and variance σ^2 .

Define
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Then,

$$\frac{\overline{X} - \mathrm{E}(\overline{X})}{\sqrt{\mathrm{V}(\overline{X})}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \longrightarrow N(0, 1),$$

which implies

$$\sqrt{n}(\overline{X} - \mu) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \sigma^2).$$

Multivariate Case: X_1, X_2, \dots, X_n are mutually independently and identically distributed as mean μ and variance Σ .

Define
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Then,

$$\sqrt{n}(\overline{X} - \mu) \longrightarrow N(0, \Sigma),$$

i.e.,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) \longrightarrow N(0, \Sigma)$$

10. Central Limit Theorem (Generalization)

 X_1, X_2, \dots, X_n are mutually independently distributed as mean μ and variance Σ_i .

Define
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Then,

$$\sqrt{n}(\overline{X} - \mu) \longrightarrow N(0, \Sigma),$$

i.e.,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i \right).$$

11. **Definition:** Let $\hat{\theta}_n$ be a consistent estimator of θ .

Suppose that $\sqrt{n}(\hat{\theta}_n - \theta)$ converges to $N(0, \Sigma)$ in distribution.

Then, we say that $\hat{\theta}_n$ has an **asymptotic distribution** (漸近分布): $N(\theta, \Sigma/n)$.

10.1 MLE: Asymptotic Properties

1. X_1, X_2, \dots, X_n are random variables with density function $f(x; \theta)$.

Let $\hat{\theta}_n$ be a maximum likelihood estimator of θ .

Then, under some **regularity conditions**. $\hat{\theta}_n$ is a consistent estimator of θ and the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is given by:

$$\sqrt{n}(\hat{\theta} - \theta) \longrightarrow N\left(0, \lim_{n \to \infty} \left(\frac{I(\theta)}{n}\right)^{-1}\right)$$

2. Regularity Conditions:

- (a) The domain of X_i does not depend on θ .
- (b) There exists at least third-order derivative of $f(x; \theta)$ with respect to θ , and their derivatives are finite.

3. Thus, MLE is

- (i) consistent,
- (ii) asymptotically normal, and
- (iii) asymptotically efficient.

Proof: The log-likelihood function is given by:

$$\log L(\theta) = \log \prod_{i=1}^{n} f(X_i; \theta) = \sum_{i=1}^{n} \log f(X_i; \theta)$$