Consider the relationship between the likelihood function above and the innovation

form.
Remember the innovation form:
2 n n ) 1 2
log L(¢1, 07 Yy Ynt1s "5 V1) = ) log 2mr — 3 logo~ + Elog(l - é7)
1 n
—T‘Q(( V1I-¢)*+ ZO’: —$1y1)’)
=2

Focus on the last term:

(Y1= )2+ > 0= $1yir)? V1=
P

Y2 = ¢1y1

=(J1=¢yi, ya—dwy, y3—dya, s Ya— )| Y3— i

Yn— ¢1yn—l
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Y2 — ¢y —¢ . | 2

=—¢1y2 |= 0 -¢ 1 . iy |=Ay
: oll

Yn = $1Yn-1 0 v = 1)\,

Therefore,
(V1= 807 + D (0= g1yi1) = (AyY Ay = Y A'Ay
=2
Comaring the exponential parts, the following equality holds.

1 rO—1 1 7 AL : -1 1 ’
—EyQ y= —FyAAy 1.€., Q" = OTQAA

Remember that there exists P such that 2 = PP’ when () is a symmetric and positive
definite matrix.

In the AR(1) case, P = cA™".
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9.5 MLE: Regression Model with AR(1) Error

When the error term is autocorrelated, the regression model is written as:

.o 2
Vi = X+ uy, u; = pu;_y + €, € ~ 1d N(0,07).

The joint distribution of u,, u,_1,- - -, u; is:
fu(una Up—15", ul;p’ O-g) = fu(ul;p’ O-z) H fu(utlut—l, Y ul;p, O-i)
=2
1
= (2710'3/(1 —pz))_”2 exp (—— )

Lt2
202/(1—p»)"

2
202 —

1 n
><(27rof)‘(”‘1)/2 exp (—— Z(ut - put_l)z] .
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By transformation of variables from u,, u,_1,-- -, u; t0 y,, Vu_1,- -+, Y1, the joint dis-

tribution of y,, y,_1, -,y 1s:

L Qs Yt > V1505 T2, B)

0
= fu(yn - xnﬁ, Yn-1 — xn—lﬁ’ s V1 — xlﬁ;p9 0'5) aM,
y
1
= 2ro/(1 = p*)~" exp(—mm - x1ﬂ>2)

n

1
><(27ro-§)‘(”_1)/2 exp [—27'2 Z((yt —pyi1) — (% — sz—l)ﬁ)z]
€ =2

1
= 2rod) (1= p*)" exp (—27_2 1 —p?y; = 1 —szlﬁ)z)

n

1
><(27T0'§)_("_1)/2 exp [_F Z(()’t =Py — (X — th—l)ﬁ)Z]
€ =2

1 1 <
= 2ro2) (1 - p»)'? exp (—ZT_E(YT - xiﬁ)z) X exp [—7 Z()’f - x}kﬁ)z]
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1
= 2m) " (02 (1 - pH)'* exp [——

= L(p’ Ug»ﬂ;yn»yn—l’ e ,)’1),

where y; and x; are given by:

) 1 =Py,
Ve =
Vi = PYi-1s

V]‘_pZ'xl"

Xt — PXi-1,

Xt

fort =1,
fortr=2,3,---
fort =1,
fort=2,3,---
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© For maximization, the first derivative of L(p, of, B Yus Yu-1, -+, y1) With respect to

B should be zero.
T
B = (Z VX (Z xy;)
(X*IX) IX*I *

= This is equivalent to OLS from the regression model: y* = X*8 + € and € ~

N(0,01,), where o = o2 /(1 - p?).

176



© For maximization, the first derivative of L(p, of, B Yus Yu-1, -+, y1) With respect to

o2 should be zero.

1 ¢ 1
== 0 -xp = -0 - XBO - XB),
n p n

where
A 1-py X VI-px
Y2 Y2 = Py .| X2 = pXi
y=1 .= . > X' =|.|= .
y:; Yn = PYn-1 X:; Xn — PXn—1
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© For maximization, the first derivative of L(p, of, B Yus Yu-1, -+, y1) With respect to

p should be zero.

max L(p, o?,B;y) isequivalentto max L(p, 5?2, ; ).
,B,O'E,p P

Note that both 6% and 3 depend only on p.

L(p, 32, B;y) is called the concentrated log-likelihood function (S£#95% 570 ERS
#4), which is a function of p.
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The log-likelihood function is written as:

3 1
log L(p, 67, B;y) = —g log(2m) — glog(&ﬁ) + 5 log(1 —p)) - g

1
= —g log(2m) - g — glog(&ﬁ(p)) +3 log(1 — p?)

For maximization of log L, use Newton-Raphson method, method of scoring or sim-

ple grid search

1 ~ ~ ~
Note that 62 = 6°2(p) = —~(" = X"BY (v = X°B) for B = (X'X")~'X"'y".
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Remark: The regression model with AR(1) error is:

V(u) = o2

Ve = x,08 + uy,
1 p p
p 1 p P
P op 1 p
A

pn 1 pn—2 p2

Je

Uy = pu;1 + &,

n—1
n—2
P

pn—3

ol
1

& ~ iid N(0, o?).

=0?Q,

2:

where o

where Cov(u;, u;) = E(uu;) = o'/, i.e., the ith row and jth column of Q is p.
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The regression model with AR(1) error is: y=XB+u, u ~ N, o*Q).
There exists P which satisfies that Q = PP’, because Q is a positive definite matrix.
Multiply P~! on both sides from the left.

Ply=P'Xg+Plu = y* = X*B+u* and u* ~ N(0, o*1,)
= Apply OLS.
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i 1 - p2y,
Y5 Y2 = py1

Vn Yn = PYn-1

* 2
X V1 —p*x
X5 Xy — pX
X, Xp — PXn-1

Y1
-p 1 0 0
Y2 .
0 -p 1 =Py
0
yn
0 0 —p 1
P'x —  Check P'QPY =al,,

where a 1s constant.
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9.6 MLE: Regression Model with Heteroscedastic Errors

In the case where the error term depends on the other exogenous variables, the re-

gression model is written as follows:
_ . 2 2 _ 2
yi = xiB + u;, u; ~ id N0, 07), o; = (za).
The joint distribution of u,, u,_1, - - -, u;, denoted by f,(:;-), is given by:

10g f(ttyy U1y + s Up5 07, oo O2) = Z log f(us; 077)
. log(2r) — l Zn: 10g(0'-2) - 1 an (ﬂ)z
2 2 4 ! 2 o
= ——10g(27r) - —Zlog(z, )2 - —Z( )

By the transformation of variables from u,, u,1,---,u; t0 y,, V-1, -+, 1, the log-
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likelihood function is:

L(@,B; Yns Yn-15 > Y1) =108 fL,(Vns Ynet15 5 Y15, B)

ou
oy’

n IR 1< (yi - xBY
= —>log(2m) - 5 ) log(zia)’ — 5 ) |=—=
> log(2m) 2 L 0g(zi@)” - 5 i:l( na )

— Maximize the above log-likelihood function with respect to 5 and «.

= lOg fu(yn - xnﬁa Yn-1— xn—lﬁa V1 — xlﬁ; 0-,2)
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10 Asymptotic Theory

1. Definition: Convergence in Distribution (7376 UY3R)

A series of random variables X, X5, - - -, X,,, - - - have distribution functions F,
F,, - - -, respectively.
If

lim F,, = F,

n—oo
then we say that a series of random variables X;, X;, --- converges to F in
distribution.

2. Consistency (—E1%):

(a) Definition: Convergence in Probability (FEZRIYER)

Let{Z,: n=1,2,---} be a series of random variables.
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If the following holds,
lim P(|Z,— 0] <€) =1,

for any positive €, then we say that Z, converges to 6 in probability.

0 is called a probability limit (FEZEAER) of Z,.
plimZ, = 6.

(b) Let 8, be an estimator of parameter 6.

If §, converges to  in probability, we say that 6, is a consistent estimator

of 6.

3. Markov’s Inequality: A General Case of Chebyshev’s Inequality:

For g(X) > 0,

P(g(X) > k) < E(g]EX) ),
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where k is a positive constant. See Introduction Mathematical Statistics (8th

ed.), p.79 for the proof.

. Example: For a random variable X, set g(X) = (X —u)'(X — ), E(X) = u and
VX)=Z

Then, we have the following inequality:

PUX Y (X —p) 2 ) < %Z)

Note as follows:

(X ~ ) (X ~ ) = B(u((X — ) (X = w)) = E(ur((X = )X ~ )

= tr(E(X ~ (X — p))) = (D).
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5. Example 1 (Univariate Case):
Suppose that X; ~ (u,0?),i=1,2,---,n.
Then, the sample average X is a consistent estimator of .
Proof:
NMNM%@%%YﬂMﬁ%%I@@D:WE:%;
Use Chebyshev’s inequality.

If n — oo,
2

P(X —ul =€) < 0-—2 — 0, for any e.
ne

That is. for any e,

lim P(X — | <€) = 1.

— Chebyshev’s inequality
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6. Example 2 (Multivariate Case):
Suppose that X; ~ (1, %),i=1,2,---,n.
Then, the sample average X is a consistent estimator of .
Proof:
Note that g(X) = (X - u)' (X — ), € = k, Eg(X)) = (VX)) = tr(%Z).
Use Chebyshev’s inequality.

If n — oo,

_ — — tr(Z
P(X-uwX-w=k)y=P(X—-ul>e) < Lz) — 0, for any positive €.
ne

That is. for any positive €, lim,_. P(X — u)'(X —u) < k) = 1.

Note that |X — u| = \/ (X — uy' (X — ), which is the distance between X and p.

— Chebyshev’s inequality
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7. Some Formulas:
Let X, and Y, be the random variables which satisfy plim X,, = cand plim ¥,, =
d. Then,
(@ pim (X, +Y,)=c+d
(b) plim X,)Y,, = cd
(¢c) plim X, /Y, =c/dford # 0

(d) plim g(X,) = g(c) for a function g(-)

190



8. Some Formulas II:
Let X, and Y, be the random variables which satisfy X, — ¢ (converfgence in
probability) and Y,, — Y (convergence in distribution). Then,

XY, — c¥

(a) cY is distributed with mean cE(Y) and variance c>V(Y).

(b) In the multivariate case, cY is distributed with mean cE(Y) and variance
cV(Y)c',wherec, Y, E(Y)and V(Y) are mxk, kx 1, kx1 and kX k vectors

or matrices.
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9. Central Limit Theorem (F/OMEREIE)

Univariate Case: X, X5, - - -, X, are mutually independently and identically

distributed as mean y and variance 0.

_ 1<
Dﬁ X=- Xl'.
ernne n;

Then, . . .
X-EX) X-u

\/\%_0/\/5

— N, D),

which implies

T = Y ) — 2
V(X - ) = vﬁ;(xl @) — NQ©,d?).
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Multivariate Case: X, X, - - -, X,, are mutually independently and identically

distributed as mean u and variance X.

_ 1<
Define X = — X;.
n ”Z‘

Then,
Vn(X - p) — N(0,%),

1.e.,

1 n
%Zm—u) — N(,%)
i=1
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10. Central Limit Theorem (Generalization)
X1, Xz, - -+, X,, are mutually independently distributed as mean u and variance
P

_ 1<
Define X = - > X.
cIine n;

Then,
V(X —p) — N(0,%),
1.e.,
1 n
— Y X;—u) — N(O,Y),
\/ﬁ; 1) 0,%)
where
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11. Definition: Let 6, be a consistent estimator of 6.
Suppose that vn(6, — 8) converges to N(0, %) in distribution.

Then, we say that §, has an asymptotic distribution GEHE53%): N(6,X/n).

10.1 MLE: Asymptotic Properties

1. Xi,X5,- -+, X, are random variables with density function f(x; 6).
Let 8, be a maximum likelihood estimator of 6.

Then, under some regularity conditions. 6, is a consistent estimator of § and

the asymptotic distribution of vn(# — 0) is given by:

-1
V@ -6 — N(O, lim (@) )

n—oo n
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2. Regularity Conditions:

(a) The domain of X; does not depend on 6.

(b) There exists at least third-order derivative of f(x; #) with respect to 6, and

their derivatives are finite.

3. Thus, MLE is

(i) consistent,
(i1) asymptotically normal, and

(ii1) asymptotically efficient.

Proof: The log-likelihood function is given by:
log L(9) = log | | f(X::0) = > log £(X::6)
i=1 i=1
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