
Xi is a random variable.

Consider the distribution of

1
n
∂ log L(θ)
∂θ

=
1
n

n∑
i=1

∂ log f (Xi; θ)
∂θ

.

We have to obtain mean and variance of
∂ log f (Xi; θ)

∂θ
.

Suppose that Xi is a continuous type of random variable.

f (xi; θ) denotes the density function.

Therefore, we have: ∫
f (xi; θ)dxi = 1

Taking the derivative with respect to θ on both sides, we obtain:

0 =
∫
∂ f (xi; θ)
∂θ

dxi =

∫
∂ log f (xi; θ)

∂θ
f (xi; θ)dxi = E

(∂ log f (Xi; θ)
∂θ

)
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Again, take the derivative with respect to θ on both sides as follows:

0 =
∫
∂2 log f (xi; θ)
∂θ∂θ′

f (xi; θ) +
∂ log f (xi; θ)

∂θ

∂ f (xi; θ)
∂θ′

dxi

=

∫
∂2 log f (xi; θ)
∂θ∂θ′

f (xi; θ)dxi +

∫
∂ log f (xi; θ)

∂θ

∂ log f (xi; θ)
∂θ′

f (xi; θ)dxi

= E
(∂2 log f (Xi; θ)

∂θ∂θ

′)
+ E

(∂ log f (Xi; θ)
∂θ

∂ log f (Xi; θ)
∂θ′

)
,

i.e.,

−E
(∂2 log f (Xi; θ)

∂θ∂θ

′)
= E

(∂ log f (Xi; θ)
∂θ

∂ log f (Xi; θ)
∂θ′

)
= V

(∂ log f (Xi; θ)
∂θ

)
= Σi

Thus,
∂ log f (Xi; θ)

∂θ
is distributed with mean 0 and variance Σi.

Note as follows:

I(θ) = −E
(∂2 log L(θ)
∂θ∂θ′

)
= −

n∑
i=1

E
(∂2 log f (Xi; θ)

∂θ∂θ′

)
=

n∑
i=1

Σi.
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Using the central limit theorem (generalization) shown above, asymptotically we ob-

tain the following distribution:

1
√

n
∂ log L(θ)
∂θ

=
1
√

n

n∑
i=1

∂ log f (Xi; θ)
∂θ

−→ N(0,Σ),

where Σ = lim
n→∞

(1
n

I(θ)
)
.

Let θ̃ be the maximum likelihood estimator.

Note that the MLE θ̃ satisfies:

∂ log L(θ̃)
∂θ

=

n∑
i=1

∂ log f (Xi; θ̃)
∂θ

= 0.

Linearizing
∂ log L(θ̃)
∂θ

around θ̃ = θ, we obtain:

0 =
1
√

n
∂ log L(θ̃)
∂θ

≈ 1
√

n
∂ log L(θ)
∂θ

+
1
√

n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ),
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where the rest of terms (i.e., the second-order term, the third-order term, ...) are ig-

nored, which implies that the distribution of
1
√

n
∂ log L(θ)
∂θ

is asymptotically equiva-

lent to that of
1
√

n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ).

We have already known the distribution of
1
√

n
∂ log L(θ)
∂θ

as follows:

1
√

n
∂ log L(θ)
∂θ

≈ − 1
√

n
∂2 log L(θ)
∂θ∂θ′

(θ̃ − θ) =
(
−1

n
∂2 log L(θ)
∂θ∂θ′

) √
n(θ̃ − θ) −→ N(0,Σ).

Note as follows:

−1
n
∂2 log L(θ)
∂θ∂θ′

−→ lim
n→∞

(
1
n

E
(
−∂

2 log L(θ)
∂θ∂θ′

))
= lim

n→∞

(1
n

I(θ)
)
= Σ.

Thus,
(
−1

n
∂2 log L(θ)
∂θ∂θ′

) √
n(θ̃−θ) asymptotically has the same distribution as Σ

√
n(θ̃−

θ).

Therefore,

V(Σ
√

n(θ̃ − θ)) = ΣV(
√

n(θ̃ − θ))Σ′ −→ Σ.
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Note that Σ = Σ′. Thus, we have the asymptotic variance of
√

n(θ̃ − θ) as follows:

V(
√

n(θ̃ − θ)) −→ Σ−1ΣΣ−1 = Σ−1.

Finally, we obtain:
√

n(θ̃ − θ) −→ N(0,Σ−1).
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11 Consistency and Asymptotic Normality of OLSE

Regression model: y = Xβ + u, u ∼ (0, σ2In).

Consistency:

1. Let β̂n = (X′X)−1X′y be the OLS with sample size n.

Consistency: As n is large, β̂n converges to β.

2. Assume the stationarity condition for X, i.e.,

1
n

X′X −→ Mxx.

and no correlation between X and u, i.e.,

1
n

X′u −→ 0.
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3. Note that
1
n

X′X −→ Mxx results in (
1
n

X′X)−1 −→ M−1
xx .

4. OLS is given by:

β̂n = β + (X′X)−1X′u = β + (
1
n

X′X)−1(
1
n

X′u).

Therefore,

β̂n −→ β + M−1
xx × 0 = β

Thus, OLSE is a consistent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE
√

n(β̂n − β) −→ N(0.σ2M−1
xx ), when n −→ ∞.
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2. Central Limit Theorem: Greenberg and Webster (1983)

Z1, Z2, · · ·, Zn are mutually independent. Zi is distributed with mean µ and

variance Σi for i = 1, 2, · · · , n.

Then, we have the following result:

1
√

n

n∑
i=1

(Zi − µ) −→ N(0,Σ),

where

Σ = lim
n→∞

1
n

n∑
i=1

Σi

 .
Note that the distribution of Zi is not assumed.

3. Define Zi = x′iui. Then, Σi = V(Zi) = σ2x′i xi.

204



4. Σ is defined as:

Σ = lim
n→∞

1
n

n∑
i=1

σ2x′i xi

 = σ2 lim
n→∞

(
1
n

X′X
)
= σ2Mxx,

where

X =


x1

x2
...

xn


5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain

the following:

1
√

n

n∑
i=1

x′iui =
1
√

n
X′u −→ N(0, σ2Mxx).

On the other hand, from β̂n = β + (X′X)−1X′u, we can rewrite as:

√
n(β̂ − β) =

(1
n

X′X
)−1 1
√

n
X′u.
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V
((1

n
X′X

)−1 1
√

n
X′u

)
= E

((1
n

X′X
)−1 1
√

n
X′u

((1
n

X′X
)−1 1
√

n
X′u

)′)
=

(1
n

X′X
)−1(1

n
X′E(uu′)X

)(1
n

X′X
)−1

= σ2
(1
n

X′X
)−1(1

n
X′X

)(1
n

X′X
)−1

−→ σ2M−1
xx MxxM−1

xx = σ
2M−1

xx .

Therefore,
√

n(β̂ − β) −→ N(0, σ2M−1
xx )

=⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of ui is not assumed.
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12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

y = X̃β + u

2. Observed variable:

X = X̃ + V

V: is called the measurement error (測定誤差 or観測誤差).

3. For the elements which do not include measurement errors in X, the corre-

sponding elements in V are zeros.
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4. Regression using observed variable:

y = Xβ + (u − Vβ)

OLS of β is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′(u − Vβ)

5. Assumptions:

(a) The measurement error in X is uncorrelated with X̃ in the limit. i.e.,

plim
(1
n

X̃′V
)
= 0.

Therefore, we obtain the following:

plim
(1
n

X′X
)
= plim

(1
n

X̃′X̃
)
+ plim

(1
n

V ′V
)
= Σ + Ω
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