X_i is a random variable.

Consider the distribution of

$$\frac{1}{n}\frac{\partial \log L(\theta)}{\partial \theta} = \frac{1}{n}\sum_{i=1}^{n}\frac{\partial \log f(X_i;\theta)}{\partial \theta}$$

We have to obtain mean and variance of $\frac{\partial \log f(X_i;\theta)}{\partial \theta}$.

Suppose that X_i is a continuous type of random variable.

 $f(x_i; \theta)$ denotes the density function.

Therefore, we have:

$$\int f(x_i;\theta) \mathrm{d}x_i = 1$$

Taking the derivative with respect to θ on both sides, we obtain:

$$0 = \int \frac{\partial f(x_i;\theta)}{\partial \theta} dx_i = \int \frac{\partial \log f(x_i;\theta)}{\partial \theta} f(x_i;\theta) dx_i = E\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right)$$

Again, take the derivative with respect to θ on both sides as follows:

$$\begin{split} 0 &= \int \frac{\partial^2 \log f(x_i;\theta)}{\partial \theta \partial \theta'} f(x_i;\theta) + \frac{\partial \log f(x_i;\theta)}{\partial \theta} \frac{\partial f(x_i;\theta)}{\partial \theta'} dx_i \\ &= \int \frac{\partial^2 \log f(x_i;\theta)}{\partial \theta \partial \theta'} f(x_i;\theta) dx_i + \int \frac{\partial \log f(x_i;\theta)}{\partial \theta} \frac{\partial \log f(x_i;\theta)}{\partial \theta'} f(x_i;\theta) dx_i \\ &= \mathrm{E}\Big(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta \partial \theta}\Big) + \mathrm{E}\Big(\frac{\partial \log f(X_i;\theta)}{\partial \theta} \frac{\partial \log f(X_i;\theta)}{\partial \theta'}\Big), \end{split}$$

i.e.,

$$-E\left(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta \partial \theta}\right) = E\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta} \frac{\partial \log f(X_i;\theta)}{\partial \theta'}\right) = V\left(\frac{\partial \log f(X_i;\theta)}{\partial \theta}\right) = \Sigma_i$$

Thus, $\frac{\partial \log f(X_i;\theta)}{\partial \theta}$ is distributed with mean 0 and variance Σ_i .

Note as follows:

$$I(\theta) = -\mathbf{E}\Big(\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\Big) = -\sum_{i=1}^n \mathbf{E}\Big(\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta \partial \theta'}\Big) = \sum_{i=1}^n \Sigma_i.$$

Using the central limit theorem (generalization) shown above, asymptotically we obtain the following distribution:

$$\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta} \longrightarrow N(0, \Sigma),$$

where $\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} I(\theta)\right).$

Let $\tilde{\theta}$ be the maximum likelihood estimator.

Note that the MLE $\tilde{\theta}$ satisfies:

$$\frac{\partial \log L(\tilde{\theta})}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \tilde{\theta})}{\partial \theta} = 0.$$

Linearizing
$$\frac{\partial \log L(\tilde{\theta})}{\partial \theta}$$
 around $\tilde{\theta} = \theta$, we obtain:

$$0 = \frac{1}{\sqrt{n}} \frac{\partial \log L(\tilde{\theta})}{\partial \theta} \approx \frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} + \frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta),$$

where the rest of terms (i.e., the second-order term, the third-order term, ...) are ignored, which implies that the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ is asymptotically equivalent to that of $\frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta)$. We have already known the distribution of $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta}$ as follows: $\frac{1}{\sqrt{n}} \frac{\partial \log L(\theta)}{\partial \theta} \approx -\frac{1}{\sqrt{n}} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} (\tilde{\theta} - \theta) = \left(-\frac{1}{n} \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right) \sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N(0, \Sigma).$

Note as follows:

$$-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'} \longrightarrow \lim_{n \to \infty} \left(\frac{1}{n} \mathbb{E}\left(-\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right)\right) = \lim_{n \to \infty} \left(\frac{1}{n}I(\theta)\right) = \Sigma.$$

Thus, $\left(-\frac{1}{n}\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta'}\right) \sqrt{n}(\tilde{\theta} - \theta)$ asymptotically has the same distribution as $\sum \sqrt{n}(\tilde{\theta} - \theta)$

 θ).

Therefore,

$$V(\Sigma \sqrt{n}(\tilde{\theta} - \theta)) = \Sigma V(\sqrt{n}(\tilde{\theta} - \theta))\Sigma' \longrightarrow \Sigma.$$

Note that $\Sigma = \Sigma'$. Thus, we have the asymptotic variance of $\sqrt{n}(\tilde{\theta} - \theta)$ as follows:

$$V(\sqrt{n}(\tilde{\theta} - \theta)) \longrightarrow \Sigma^{-1}\Sigma\Sigma^{-1} = \Sigma^{-1}.$$

Finally, we obtain:

$$\sqrt{n}(\tilde{\theta} - \theta) \longrightarrow N(0, \Sigma^{-1}).$$

11 Consistency and Asymptotic Normality of OLSE

Regression model: $y = X\beta + u$, $u \sim (0, \sigma^2 I_n)$.

Consistency:

1. Let $\hat{\beta}_n = (X'X)^{-1}X'y$ be the OLS with sample size *n*.

Consistency: As *n* is large, $\hat{\beta}_n$ converges to β .

2. Assume the stationarity condition for *X*, i.e.,

$$\frac{1}{n}X'X \longrightarrow M_{xx}.$$

and no correlation between X and u, i.e.,

$$\frac{1}{n}X'u \longrightarrow 0.$$

202

3. Note that
$$\frac{1}{n}X'X \longrightarrow M_{xx}$$
 results in $(\frac{1}{n}X'X)^{-1} \longrightarrow M_{xx}^{-1}$.

4. OLS is given by:

$$\hat{\beta}_n = \beta + (X'X)^{-1}X'u = \beta + (\frac{1}{n}X'X)^{-1}(\frac{1}{n}X'u).$$

Therefore,

$$\hat{\beta}_n \longrightarrow \beta + M_{xx}^{-1} \times 0 = \beta$$

Thus, OLSE is a consistent estimator.

Asymptotic Normality:

1. Asymptotic Normality of OLSE

$$\sqrt{n}(\hat{\beta}_n - \beta) \longrightarrow N(0.\sigma^2 M_{xx}^{-1}), \text{ when } n \longrightarrow \infty.$$

2. Central Limit Theorem: Greenberg and Webster (1983)

 Z_1, Z_2, \dots, Z_n are mutually independent. Z_i is distributed with mean μ and variance Σ_i for $i = 1, 2, \dots, n$.

Then, we have the following result:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(Z_{i}-\mu) \longrightarrow N(0,\Sigma),$$

where

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i \right).$$

Note that the distribution of Z_i is not assumed.

3. Define $Z_i = x'_i u_i$. Then, $\Sigma_i = V(Z_i) = \sigma^2 x'_i x_i$.

4. Σ is defined as:

$$\Sigma = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma^2 x'_i x_i \right) = \sigma^2 \lim_{n \to \infty} \left(\frac{1}{n} X' X \right) = \sigma^2 M_{xx},$$

where

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

5. Applying Central Limit Theorem (Greenberg and Webster (1983), we obtain the following:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i}^{\prime}u_{i}=\frac{1}{\sqrt{n}}X^{\prime}u\longrightarrow N(0,\sigma^{2}M_{xx}).$$

On the other hand, from $\hat{\beta}_n = \beta + (X'X)^{-1}X'u$, we can rewrite as:

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u.$$

205

$$V\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right) = E\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\left(\left(\frac{1}{n}X'X\right)^{-1}\frac{1}{\sqrt{n}}X'u\right)'\right)$$
$$= \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'E(uu')X\right)\left(\frac{1}{n}X'X\right)^{-1}$$
$$= \sigma^{2}\left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'X\right)\left(\frac{1}{n}X'X\right)^{-1}$$
$$\longrightarrow \sigma^{2}M_{xx}^{-1}M_{xx}M_{xx}^{-1} = \sigma^{2}M_{xx}^{-1}.$$

Therefore,

$$\sqrt{n}(\hat{\beta} - \beta) \longrightarrow N(0, \sigma^2 M_{xx}^{-1})$$

⇒ Asymptotic normality (漸近的正規性) of OLSE

The distribution of u_i is not assumed.

12 Instrumental Variable (操作変数法)

12.1 Measurement Error (測定誤差)

Errors in Variables

1. True regression model:

$$y = \tilde{X}\beta + u$$

2. Observed variable:

$$X = \tilde{X} + V$$

V: is called the measurement error (測定誤差 or 観測誤差).

3. For the elements which do not include measurement errors in *X*, the corresponding elements in *V* are zeros.

4. Regression using observed variable:

$$y = X\beta + (u - V\beta)$$

OLS of β is:

$$\hat{\beta} = (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'(u - V\beta)$$

5. Assumptions:

(a) The measurement error in X is uncorrelated with \tilde{X} in the limit. i.e.,

$$\operatorname{plim}\left(\frac{1}{n}\tilde{X}'V\right) = 0.$$

Therefore, we obtain the following:

$$\operatorname{plim}\left(\frac{1}{n}X'X\right) = \operatorname{plim}\left(\frac{1}{n}\tilde{X}'\tilde{X}\right) + \operatorname{plim}\left(\frac{1}{n}V'V\right) = \Sigma + \Omega$$