Econometrics I's Homework #2

Deadline: July 22, 2025, 10:20AM

- The answer should be written in English or Japanese.
- Your name and student ID number should be included in your answer sheet.

Consider the following regression model:

$$y = X\beta + u = i\beta_1 + X_2\beta_2 + u$$

1

where $y, X = (i, X_2), \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ and u denote $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices. k and T are the number of explanatory variables and the sample size. Note that $i = (1, 1, \dots, 1)'$. β_1 is a constant term. β_2 is a $(k-1) \times 1$ vector, and X_2 is a $T \times (k-1)$ matrix. u_1, u_2, \dots, u_T are mutually independently and **normally** distributed with mean zero and variance σ^2 , i.e., $u \sim N(0, \sigma^2 I_T)$. β are a vector of unknown parameters to be estimated. Let $\hat{\beta}$ be the ordinary least squares estimator of β . We define a vector of residuals as $e = y - X\hat{\beta}$.

(1) Show that
$$Mi = 0$$
 and $Me = e$, where $M = I_T - \frac{1}{T}ii'$.

(2) Show that
$$e'e = y'My - \hat{\beta}'X'MX\hat{\beta} = y'My - \hat{\beta}_2'X_2'MX_2\hat{\beta}_2$$
, where $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1\\ \hat{\beta}_2 \end{pmatrix}$.

(3) The coefficient of determination is defined as: $R^2 = 1 - \frac{e'e}{y'My}$, where $M = I_T - \frac{1}{T}ii'$.

Show that $R^2 = \frac{\hat{\beta}_2' X_2' M X_2 \hat{\beta}_2}{y' M y}$

- (4) Let R be an $G \times k$ vector with $G \leq k$. Derive the distribution of $R\hat{\beta}$.
- (5) The null hypothesis is given by H₀: Rβ = r.
 Under the null hypothesis, derive the distribution of Rβ̂.
- (6) We want to test $\beta_2 = 0$. What are G, R and r?

(7) We know that
$$\frac{(R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/G}{e'e/(T - k)} \sim F(G, T - k)$$

Show that
$$\frac{\hat{\beta}'_2 X'_2 M X_2 \hat{\beta}_2/G}{e'e/(T - k)} \sim F(G, T - k).$$

(8) When we test H_0 : $\beta_2 = 0$, the test statistic is given by $\frac{R^2/(k-1)}{(1-R^2)/(T-k)}$.

Show that
$$\frac{R^2/(k-1)}{(1-R^2)/(T-k)} \sim F(k-1,T-k)$$

(9) Suppose that we have the following estimation result:

$$y_i = \begin{array}{ccc} 0.3 & + & 0.65 \\ (3.163) & & (0.240) \end{array} X_i, \qquad s = 1.07, \quad R^2 = 0.786$$

where the sample size is T = 4, () indicates the standard error of the corresponding coefficient estimate, s denote the standard error of regression, and R^2 represents the coefficient of determination.

Let β be the coefficient of X_i .

We want to test $\beta = 0$ for the regression model: $y_i = \alpha + \beta X_i + u_i$.

First, using the estimate 0.65 and its standard error of coefficient (i.e., 0.240), test $\beta = 0$. Second, using R^2 , test $\beta = 0$.

Compare both test statistics and make sure $t^2(T-k) = F(1, T-k)$

You can find various distribution tables in standard introductory statistics textbooks.

Consider the regression model:

2

$$y = X\beta + u, \qquad u \sim N(0, \sigma^2 I_T),$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$.

Let $\hat{\beta}$ be the ordinary least squares estimator, and $\tilde{\beta}$ be the ordinary least squares estimator restricted to $R\beta = r$, where R and r are $G \times k$, $G \times 1$ and $G \leq k$. \hat{u} and \tilde{u} are defined as the OLS residual and the restricted OLS residual, respectively.

$$y = X\beta + \hat{u} \tag{A}$$

$$y = X\tilde{\beta} + \tilde{u}, \qquad R\tilde{\beta} = r$$
 (B)

- (1) Derive the restricted OLS $\tilde{\beta}$.
- (2) Show the following:

$$\frac{(\tilde{u}'\tilde{u} - \hat{u}'\hat{u})/G}{\hat{u}'\hat{u}/(T-k)} \sim F(G, T-k).$$

(3) Suppose that the coefficients of determination in (A) and (B) are given \hat{R}^2 and \tilde{R}^2 , respectively. Show the following:

$$\frac{(\hat{R}^2 - \tilde{R}^2)/G}{(1 - \hat{R}^2)/(T - k)} \sim F(G, T - k).$$

3 We consider estimating the following three production functions.

$$\log(Y_t) = \alpha_0 + \alpha_1 \log(K_t) + \alpha_2 \log(L_t) + u_t$$

$$\log(y_t) = \beta_0 + \beta_1 \log(k_t) + u_t$$

$$\log(Y_t) = \gamma_0 + \gamma_1 \log(K_t) + \gamma_2 \log(L_t) + \gamma_3 D_t + \gamma_4 D_t \log(K_t) + \gamma_5 D_t \log(L_t) + u_t$$

The estimation period is 1969 – 1997 (it's too old!). Let Y_t be GDP (10 billion yen, 1992 price), K_t be the net worth (10 billion yen, deflated by the GDP deflator), L_t be the number of employees, D_t be the dummy variable, which is one after 1991 and zero before 1991, y_t be the per capita GDP (10 billion yen, 1992 price, $y_t = Y_t/L_t$), and k_t be the per capita net worth (10 billion yen, deflated by the GDP deflator, $k_t = K_t/L_t$). The error terms u_1, u_2, \dots, u_T are mutually independently, identically and normally distributed.

The following estimation results are obtained.

$$\begin{split} \log(Y_t) &= -30.6242 + .230042 \log(K_t) + 2.23565 \log(L_t) \\ (7.283) & (5.054) & (8.266) \\ R^2 &= .986684, \quad \overline{R}^2 &= .985659, \quad \widehat{\sigma}^2 &= .00141869 \\ \log(y_t) &= -3.53058 + .504043 \log(k_t) \\ (41.08) & (19.62) \\ R^2 &= .934448, \quad \overline{R}^2 &= .932020, \quad \widehat{\sigma}^2 &= .00354801 \\ \log(Y_t) &= -34.6168 + .204302 \log(K_t) + 2.48045 \log(L_t) \\ (3.630) & (2.588) & (4.155) \\ - 54.8287 D_t + .243766 D_t \log(K_t) + 2.84275 D_t \log(L_t) \\ (1.090) & (.4665) & (1.134) \\ R^2 &= .987960, \quad \overline{R}^2 &= .985342, \quad \widehat{\sigma}^2 &= .00145010 \end{split}$$

Note that the values in the parentheses denote the t values, R^2 is the coefficient of determination, \overline{R}^2 is the adjusted R^2 , and $\hat{\sigma}^2$ is the variance estimate of regression.

Answer the following questions.

- (1) Test H_0 : $\alpha_1 = \alpha_2 = 0$.
- (2) Test whether the production function is homogeneous.
- (3) Test whether the structural change occurred after 1991.

For each question, show the testing procedure in detail.

4

- (1) Show that there exists P such that $\Omega = PP'$ when Ω is a symmetric and positive definite matrix.
- (2) Consider the following regression model:

$$y_t = x_t \beta + u_t, \qquad u_t \sim N(0, \sigma^2 z_t^2), \qquad t = 1, 2, \cdots, T,$$

where u_1, u_2, \dots, u_T are mutually independent.

What is the variance-covariance matrix, denoted by $\sigma^2 \Omega$, of $u = (u_1, u_2, \dots, u_T)'$.

(3) Consider the following regression model:

$$y_t = x_t \beta + u_t, \qquad u_t = \rho u_{t-1} + \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma^2), \qquad t = 1, 2, \cdots, T,$$

where $\epsilon_1, \epsilon_2, \cdots, \epsilon_T$ are mutually independent.

What is the variance-covariance matrix, denoted by $\sigma^2 \Omega$, of $u = (u_1, u_2, \dots, u_T)'$.

(4) Let b be the best linear unbiased estimator of β under the following regression model:

$$y = X\beta + u, \qquad u \sim N(0, \sigma^2 \Omega),$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$. Derive b.

(5) Consider the regression model in (4). We have two estimators, $\hat{\beta}$ and b, to estimate β , where $\hat{\beta}$ denotes the OLS estimator and b indicates the GLS estimator.

Obtain $E(\hat{\beta})$ and $V(\hat{\beta})$.

Show that $V(\hat{\beta}) - V(b)$ is a positive definite matrix.

5 Suppose that u_1, u_2, \dots, u_T are mutually independently and normally distributed with $E(u_t) = 0$ and $V(u_t) = \sigma^2$ for all $t = 1, 2, \dots, T$.

Consider the following regression model:

$$y_t = \alpha + \beta x_t + u_t$$

Answer the following questions.

- (1) Construct the likelihood function of $(\alpha, \beta, \sigma^2)$.
- (2) Obtain the maximum likelihood estimator of $\theta = (\alpha, \beta, \sigma^2)'$, denoted by $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta}, \tilde{\sigma}^2)'$.
- (3) Obtain the information matrix $I(\theta)$.
- (4) Compare OLSE (i.e., $\hat{\beta}$) and MLE (i.e., $\tilde{\beta}$) of β with respect to mean and variance. How about OLSE (i.e., s^2) and MLE (i.e., $\hat{\sigma}^2$) of σ^2 ?

6 Suppose that $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ are mutually independently and normally distributed with $E(\epsilon_t) = 0$ and $V(\epsilon_t) = \sigma^2$ for all $t = 1, 2, \dots, T$.

Consider the following regression model:

 $y_t = \rho y_{t-1} + \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma^2)$

Answer the following questions.

- (1) Obtain mean and variance of y for $y = (y_1, y_2, \dots, y_T)'$.
- (2) Using (1), construct the likelihood function of (ρ, σ^2) .
- (3) Obtain unconditional mean and variance of y_t . Obtain conditional mean and variance of y_t given y_{t-1}, y_{t-2}, \cdots .
- (4) Using (3), construct the likelihood function in the innovation form.
- (5) Comparing the two likelihood function, obtain the matrix P such that $\Omega = PP'$, where Ω denotes the variance obtained in (2).

7 Suppose that u_1, u_2, \dots, u_T are mutually independently distributed with $E(u_t) = 0$ and $V(u_t) = \sigma^2$ for all $t = 1, 2, \dots, T$.

Consider the following regression model:

 $y = X\beta + u,$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices or vectors. Answer the following questions.

- (1) Let $\hat{\beta}$ be the ordinary least squares estimator of β . Show that $\hat{\beta}$ is a consistent estimator of β . You have to make clear the underlying assumptions.
- (2) As T goes to infinity, what is the asymptotic distribution of $\frac{1}{\sqrt{T}}X'u$?
- (3) Obtain the asymptotic distribution of $\sqrt{T}(\hat{\beta} \beta)$.

8 Suppose that X_1, X_2, \dots, X_T are mutually independently distributed with the density functions $f(x_i; \theta), i = 1, 2, \dots, T.$

- (1) Let $\hat{\theta}$ be the maximum likelihood estimator of θ . Show that $\hat{\theta}$ is a consistent estimator of θ . You have to make clear the underlying assumptions.
- (2) As T goes to infinity, what is the asymptotic distribution of $\frac{1}{\sqrt{T}} \sum_{i=1}^{T} \frac{\partial \log f(X_i; \theta)}{\partial \theta}$?
- (3) Obtain the asymptotic distribution of $\sqrt{T}(\hat{\theta} \theta)$.

9 Suppose that u_1, u_2, \dots, u_T are mutually independently distributed with $E(u_t) = 0$ and $V(u_t) = \sigma^2$ for all $t = 1, 2, \dots, T$.

Consider the following regression model:

$$y = X\beta + u,$$

where y, X, β and u are $T \times 1, T \times k, k \times 1$ and $T \times 1$ matrices or vectors. Answer the following questions.

- (1) When X is correlated with u, show that OLSE of β , i.e., $\hat{\beta}$, is inconsistent.
- (2) X is correlated with u. Suppose that we have the $T \times k$ matrix Z which is uncorrelated with u and correlated with X. Obtain a consistent estimator of β , usin Z.
- (3) Obtain an asymptotic distribution of the consistent estimator in (2).